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Abstract

A self-referencing interferometer based closed-loop adaptive optics controller is de-

veloped which is designed to operate effectively under strong turbulence conditions. The

aberrated optical field is modeled stochastically and then estimates of the state of the system

are developed using a steady-state, fixed-gain Kalman filter. The phase of the optical field is

considered the state of the system which is wrapped in a limited range of (-π, π]. This phase

is unwrapped through the use of a least-squares reconstructor which has been modified to

work effectively in the presence of branch points associated with strong turbulence. The

conjugate of the optical phase is then applied to the system’s deformable mirror in order to

correct for the effects of atmospheric turbulence on the optical field.

The advances developed in this research are in the application of a steady-state, fixed-

gain Kalman filter to the input of an adaptive optic system, unwrapping the optical phases

after the field estimation, and improving the phase unwrapping by varying the domain of

the rotational phase component present in strong turbulence.

The system developed in this research is shown in computer simulation to be improved

over current designs by comparing performance plots of system Strehl ratios for systems

utilizing the different designs.
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Closed-Loop Adaptive Optics Control in

Strong Atmospheric Turbulence

I. Introduction

Adaptive Optics (AO) is used to correct for the effect of atmospheric turbulence on an

optical system. By correcting for the effect of atmospheric turbulence, the system can

be improved until it becomes diffraction-limited, at which point it performs as if looking

through a vacuum instead of turbulent air. In this case, the resolution of the system is

limited solely by the aperture size of the system.

1.1 AO systems

AO systems have three main parts. First, a wavefront sensor (WFS) measures the

wavefront of light received by the system. Second, a controller takes the output from the

WFS and creates the input to the third part of an AO system, a wavefront compensator

which corrects the wavefront. [12]

Figure 1.1 shows a simple system in which the distorted wavefront is sensed by a WFS.

Wavefront measurements are given to the controller which then commands a deformable

mirror (DM) to minimize the effect of atmospheric turbulence. This is an open-loop system

which is conceptually valuable but not very effective in practice. A block diagram of the

equivalent control loop is depicted in Figure 1.2.

A more realistic depiction of an adaptive optics system is given in Figure 1.3, with

the equivalent control loop block diagram in Figure 1.4. This system is closed-loop because

the DM corrects the wavefront prior to it encountering the WFS. In this system a non-

deformable mirror known as a fast-steering mirror (FSM) corrects the tilt (average phase

gradient over the entire aperture). A second mirror is deformable and flattens the wavefront.

This arrangement minimizes the dynamic range required of the DM.

1



deformable

mirror B
S

imaging

camera

beamsplitter

actuator

command

computer

light from

distant object
WFS

Turbulence

Distorted Wavefront

Less

Distorted

Wavefront

Figure 1.1: Example of a simple open-loop AO system
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WFS Controller
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Figure 1.2: Open-loop control system block diagram. ‘In’ represents the light incident on
the telescope while ‘Out’ represents the light incident on the imaging camera.

1.2 Shack-Hartmann Wavefront Sensor

Most AO systems use a Shack-Hartmann (S-H) WFS (which measures the field gra-

dient of light), a controller and a DM. Correspondingly, improvements to AO systems have

been achieved by improving either the S-H WFS, DM, or the control algorithm connecting

the two. After years of development, systems of this design are relatively mature and offer

good performance in correcting for weak atmospheric turbulence.

Figure 1.5 shows two images of a binary star system taken at AFRL’s Starfire Optical

Range (SOR). “These images were taken using the SOR’s 3.5 m telescope in the I band,

which has a center wavelength of ∼850 nm. The compensated image was corrected by the

756 active actuator AO system. The angular separation between the two stars is 1.45 mrad.

The top two images are auto scaled, but the surface plots on the bottom are on the same
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scale. Notice that the peak intensity is much, much greater in the compensated image.” [45]

This clearly illustrates how effective conventional AO can be in weak turbulence.

1.3 Self-Referencing Interferometers

Recently, a new type of WFS known as a self-referencing interferometer (SRI) has been

developed. An SRI is an appealing alternative to the S-H because it more directly senses

the optical field while the S-H simply measures the field gradient. An SRI has two distinct

advantages over a S-H WFS. The primary benefit of an SRI is better performance under

strong turbulence conditions. [24] Traditional WFSs and reconstruction methods ignore a

portion of the phase caused by strong turbulence (the rotational field, explained in Chapter

II) while an SRI measures it accurately. [24] A second benefit to an SRI is that by more
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Figure 1.5: Uncorrected image (left) vs. AO corrected image (right) [45]

directly sensing the field, the reconstruction of the field from the WFS output is greatly

simplified.

For weak turbulence, the two types of WFSs provide comparable performance. The

S-H WFS gradient measurements can be reconstructed into phases with relative ease and the

turbulence is weak enough that the traditional systems detect the entire field. At stronger

turbulence levels, however, effective AO control becomes much more difficult for traditional

systems.

In strong turbulence conditions, the phase of the received light has significant spatial

variation. In addition, a phenomenon known as scintillation starts to occur where the am-

plitude of the optical field varies causing bright spots and nulls to appear in the field. These

nulls can lead to something called branch points (explained in more detail in Chapter II)

where the phase of the optical field becomes discontinuous. This complicates all three as-
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Figure 1.6: Performance comparison between S-H WFS with conventional Least Squares
reconstructor (green line), SRI WFS with exponential filter then unwrapper (blue line and
top left DM depiction), and SRI WFS with unwrapping the linear filtering (red line and top
right DM depiction) [34].

pects of standard AO systems: the reconstruction of the field gradient measurements into

the field, the computation of optimum control of the field, and the control of the field.

Since an SRI effectively eliminates the need for wavefront reconstruction and senses

the rotational component of the phase, it promises a significant improvement over gradi-

ent sensors for these stronger turbulence conditions. However, using the new sensor in

closed-loop control has proven to be problematic. Ignoring the branch point effects limits

performance of the system. Including branch point effects has created stability problems in

the control loops.

The bottom plot in Figure 1.6 show AO performance for three different system designs

under similar strong turbulence atmospheric conditions. The green line shows a system using

5



a S-H WFS and a least-squares (LS) reconstructor. The poor performance of this system is

due to ignoring the effect of branch points on the measured phase of the field. The blue line

depicts the performance of system using an SRI with an exponential filter and an unwrapper

designed to account for branch point effects. This system takes branch point effects into

account, which causes it to significantly outperform the first system. The variability in

the performance of the system, however, is due to the system constructing differing branch

cuts from frame to frame. The correction present on the DM at the end of the test is

depicted on the top left of the figure. The red line shows performance of a system utilizing

an SRI with an unwrapper and a linear filter. Branch points are taken into account, but the

system becomes unstable and eventually underperforms the S-H WFS and exponential filter

system. This instability is thought to be due to the undersampling of the optical field by

the SRI which leads to erroneously identifying branch points which do not in fact exist. The

erroneous branch points build up on the DM because they cannot be sensed and eventually

yield a de-stabilized DM like the one depicted on the top right of the figure. [25]

The goal of this dissertation then is to develop a closed-loop AO control structure effec-

tive under strong turbulence conditions. The design utilizes an SRI WFS with a controller

which precludes buildup of unnecessary branch points effects on the DM.

1.4 Motivation

Weapons are the tools of the warrior and just as pilots need day/night all-weather

aircraft, military systems such as the Airborne Laser (ABL) which use optically directed

energy must work in strong turbulence conditions. A well-designed SRI-based AO sys-

tem should perform effectively under strong turbulence conditions, while conventional AO

systems cannot.

What if free people could live secure in the knowledge that their security did not
rest upon the threat of instant U.S. retaliation to deter a Soviet attack, that we
could intercept and destroy strategic ballistic missiles before they reached our
own soil or that of our allies? - Ronald Reagan [33]
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II. Literature Review

This chapter covers the background material and relevant research literature for the

project. It covers all the parts of a closed-loop AO system with special emphasis on

the WFS. More specifically, S-H and SRI WFSs are covered in detail. Stochastic estima-

tion and control is covered, and the workings of a Kalman filter are described. Wavefront

manipulation devices are discussed. Finally, branch point phenomena and their effects on

AO controllers are covered.

2.1 Adaptive Optics

The effects of atmospheric turbulence on optical systems were noted as early as 1656

by Christian Huygens [21]. Automatic tracking of objects, however, was not accomplished

until the 1950s and compensating for atmospheric turbulence was first suggested in 1953

by Horace W. Babcock [21]. Later, in 1973, the first crude AO system was tested at the

Rome Air Development Center optical test range in Verona, New York [21]. The use of laser

beacons to provide the reference wavefront needed to determine atmospheric turbulence was

first demonstrated in 1989 at Kirtland AFB’s Starfire Optical Range [21]. The result of many

years of development is that AO has been advanced to the point of being a relatively mature

field, able to give good performance under conditions of weak atmospheric turbulence.

2.2 Wavefront Sensors

The first step in correcting for the effects of atmospheric turbulence is to measure

these effects. This requires a sensor which can measure an optical wavefront.

Light, when treated as a wave, is represented in an x, y plane as the optical field

U(x, y, t) = A(x, y, t)exp[jφ(x, y, t) ± ωt] where A(x, y, t) represents the amplitude of the

wave field, φ(x, y, t) is the phase and ω is the angular frequency of the field [22]. Considering

only coherent light, we drop the ωt dependence and simply consider the phasor form of the

field U(x, y) = A(x, y)exp[jφ(x, y)].

Measuring an optical field is difficult because the period of optical waves is on the

order of femtoseconds, much too fast to detect directly. As such, there is no such thing as
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a field detector. Instead, sensors able to detect the intensity of light I(x, y, t) = ‖U(x, y, t)‖
are utilized. The field of the light must be inferred from these intensity measurements.

The field intensity can be measured by media such as the retina of an eye, photographic

film or solid-state photo-detector arrays. All these media work effectively the same in that

they integrate the intensity of the field over some finite amount of time. This can be

represented by

I(x, y, tk) = C

tk∫

tk−1

‖U(x, y, t)‖2dt = C

tk∫

tk−1

A2(x, y, t)dt (1)

where tk is the nomenclature for the kth time interval from tk−1 to tk and C converts the

units of ‖U(x, y, t)‖ and A2(x, y, t) (watts/m2) to the units of intensity (Joules/m2) [20].

A photo-detector array is particularly relevant for AO as it is the medium used to

measure the field in AO systems. Since the pixel size of a photo-detector array is fixed and

finite, the formula becomes

I(xi, yj , tk) =
∫

yj

∫

xi

I(x, y, tk)dxdy (2)

where x and y are integrated over the area of the ijth detector pixel. I(xi, yj , tk) is then

the average intensity of the ijth pixel for the kth time frame from tk−1 to tk. The key point

here is that I(xi, yj , tk) is a discrete representation of I(x, y, t). If pixel sizes are kept small

and time frames kept short, the representation is generally adequate.

Having the intensity of the field, the discrete amplitude A(xi, yj , tk) is easy to deter-

mine as
√

I(xi, yj , tk) [19]. Determining the phase of the field φ(xi, yj , tk) is more problem-

atic.

2.2.1 Shack-Hartmann Wavefront Sensor. The most common wavefront gradient

sensor is the Shack-Hartmann WFS. As shown in Figure 7, this sensor works by using a

lenslet array to divide the aperture into multiple sub-apertures [11]. Each sub-aperture’s

lenslet focuses incoming light onto a focal-plane detector. The detector has a small grid

of photo-detector pixels assigned to each sub-aperture. If the light in one sub-aperture is
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Figure 7: Shack-Hartmann lenslet diagram [40]

propagating in a planar fashion, the light is focused in the center of that sub-aperture’s

photo-detector grid. If the light entering a sub-aperture has a non-zero average tilt (or

average phase gradient), then the light is focused off-center on the receiving array. The x

and y centroid of the received light is computed by performing a weighted average of the

intensity of the light received by each pixel assigned to a sub-array in the equation

x̄ij =

N∑
m=1

N∑
n=1

x̄mnI(xm, yn, tk)

N∑
m=1

N∑
n=1

I(xm, yn, tk)
(3)

and

ȳij =

N∑
m=1

N∑
n=1

ȳmnI(xm, yn, tk)

N∑
m=1

N∑
n=1

I(xm, yn, tk)
(4)

where N is the number of pixels in the x and y directions (assumed to be the same) of the

ijth sub-aperture and x̄mn and ȳmn are the x and y center of the mnth pixel in the sub-
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Figure 8: Determining phase tilt from a S-H WFS [8]

aperture. Note that for Figure 7, N = 2 with detector pixels symmetric about the optical

axis of the subaperture. This simplifies Equations (3) and (4) to the expressions included

in the figure where a, b, c and d are the intensities I(xm, yn, tk) and the resultant 4x and

4y are the centroid of the ijth sub-aperture x̄ij and ȳij .

As shown in Figure 8, the average tilt of the field over the sub-aperture in the x and

y directions can be determined by the geometry of the setup. The phase gradients in the x

and y directions can be calculated as

(
∂φ

∂x

)

ij

=
x̄ij

2πλf
(5)

and (
∂φ

∂y

)

ij

=
ȳij

2πλf
(6)

where f is the focal length of the sub-aperture lenslet and λ is the wavelength of the light.

The net result of these gradient calculations is that arrays of phase gradients, (∂φ
∂x )ij

and (∂φ
∂y )ij , are generated and can be passed on as wavefront information to a controller.

The controller can reconstruct the field from those gradient measurements.

2.2.2 Temporally Phase-Shifted Self-Referencing Interferometer. As shown in Fig-

ure 9, a self-referencing interferometer (SRI) takes a different approach to measuring wave-

front information. Incoming light is split into two separate beams. The reference beam is

created by focusing one leg into a single mode optical fiber. This strips all but the DC,
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or planar, component of the light by spatially filtering it into the fiber’s single mode. The

light that exits the fiber acts as a point source. After the fiber, the light is collimated by

a second lens. At this point, it is a uniform plane wave while retaining coherence to the

beacon (which is required to create an interferogram). Note that the fiber acts not only as

a spatial filter, but as a phase shifter with an induced phase shift θn. The relative phase

shift θn of the fiber can be varied with an optical phase shifter which slightly stretches the

fiber in order to alter the phase of the outgoing light. The ability to control and vary the

relative phase of the reference beam is critical to determining the field of the beacon signal.

The reference beam optical field can be expressed as

Ur(t) = Ar(t)e−jθn (7)

where Ar(t) is the amplitude of the reference beam and θn is a variable that can be controlled

by the SRI’s phase shifter. Note the lack of spatial dependence in Ur(t).

The SRI recombines the beacon and reference beams expressed as

Utotal(x, y, t) = Ub(x, y, t) + Ur(t) = A(x, y, t)ejφ(x,y,t) + Ar(t)ejθn (8)
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This combination creates interference patterns between the two beams. Wherever the bea-

con beam is in phase with the reference beam, there is constructive interference and wherever

the beacon is out of phase with the reference there is destructive interference [26].

The intensity of the interference pattern at the photo-detector array is

In(x, y, t) = ‖Utotal(x, y, t)‖2 = UtotalU
∗
total

= (Ub + Ur)(Ub + Ur)∗

= UbU
∗
b + UrU

∗
r + UbU

∗
r + UrU

∗
b

= ‖Ub‖2 + ‖Ur‖2 + A(x, y, t)Ar(ej[φ(x,y,t)−θn] + e−j[φ(x,y,t)−θn])

= Ib(x, y, t) + Ir(x, y, t) + 2
√

Ib(x, y, t)Ir(x, y, t) cos[φ(x, y, t)− θn]

(9)

The photo detector array measures the interference pattern, recording the data for each

pixel In(xi, yj , tk) as in Equation (2) and passes the array of discretized data In(tk) to the

controller for processing.

In the interference pattern In(tk), the subscript n indicates explicit correspondence

to the reference phase delay θn. Chosen properly, each different phase offset will create an

independent interference pattern when the reference and beacon beams are combined. At

least three independent interference patterns are required to determine the three unknowns

of amplitude A(xi, yj , tk), phase φ(xi, yj , tk) and reference amplitude Ar(xi, yj , tk). Four

interference patterns are more typically used in a pattern where θ1 = 0, θ2 = π/2, θ3 = π

and θ4 = 3π/2 for n=1, 2, 3 and 4 so that a four frame sequence of interference patterns

would be

12



I1(xi, yj , tk−3) = Ibcn(xi, yj , tk−3) + Ir(xi, yj , tk−3)

+2
√

Ibcn(xi, yj , tk−3)Ir(xi, yj , tk−3) cos(φ(xi, yj , tk−3))

I2(xi, yj , tk−2) = Ibcn(xi, yj , tk−2) + Ir(xi, yj , tk−2)

+2
√

Ibcn(xi, yj , tk−2)Ir(xi, yj , tk−2) cos(φ(xi, yj , tk−2)− π/2)

I3(xi, yj , tk−1) = Ibcn(xi, yj , tk−1) + Ir(xi, yj , tk−1)

+2
√

Ibcn(xi, yj , tk−1)Ir(xi, yj , tk+2) cos(φ(xi, yj , tk−1)− π)

I4(xi, yj , tk) = Ibcn(xi, yj , tk) + Ir(xi, yj , tk)

+2
√

Ibcn(xi, yj , tk)Ir(xi, yj , tk) cos(φ(xi, yj , tk)− 3π/2)

(10)

where Ibcn() is the intensity of the beacon and Ir() is the intensity of the reference beam.

Then, making the assumption that field is being sampled fast enough that the field

has not changed between the four successive interference patterns,

I1(xi, yj , tk) = I1(xi, yj , tk−3)

I2(xi, yj , tk) = I2(xi, yj , tk−2)

I3(xi, yj , tk) = I3(xi, yj , tk−1)

so that the field can be determined [24] as

U(xi, yj , tk) =
1

4
√

Ir
(I1(xi, yj , tk)− I3(xi, yj , tk) + j[I2(xi, yj , tk)− I4(xi, yj , tk)])

=
1
2

√
Ibcn(xi, yj , tk)[cos(φ(xi, yk, tk)) + j sin(φ(xi, yj , tk))]

= Abcn(xi, yj , tk)ejφ(xi,yj ,tk)

(11)

From Equation (11), the average phase of the field in the ijth pixel can be determined as
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φ(xi, yj , tk) =





tan−1
[

I2(xi,yj ,tk)−I4(xi,yj ,tk)
I1(xi,yj ,tk)−I3(xi,yj ,tk)

]
∀ I1(xi, yj , tk) 6= I3(xi, yj , tk)

π
2 ∀ I2(xi, yj , tk) > I4(xi, yj , tk),

I1(xi, yj , tk) = I3(xi, yj , tk)

−π
2 ∀ I2(xi, yj , tk) < I4(xi, yj , tk),

I1(xi, yj , tk) = I3(xi, yj , tk)

Undefined ∀ I2(xi, yj , tk) = I4(xi, yj , tk),

I1(xi, yj , tk) = I3(xi, yj , tk)

(12)

Being able to derive the field’s average phase for each of the pixels of the photo-detector

array makes each pixel equivalent to a subaperture in a gradient WFS which uses at least

four, and often sixteen detector pixels. Unlike the case of a gradient sensor, however, an

SRI requires no further reconstruction because the field is already computed through simple

trigonometry.

The phase of the reference beam is controlled so that it shifts between successive

frames. This is depicted in Figure 11. The advantage of the temporally phase-shifted SRI

is the relative simplicity of its design [10]. The disadvantage is that the system assumes

that the turbulence is unchanged while the temporal interference pattern is generated. As a

result, the frame rate must be kept very high. The Greenwood frequency fG, which can be

determined from turbulence and wind profiles, describes how fast the field is changing due to

the dynamic nature of the turbulence [1]. In order to be valid, the frame rate of a temporally

designed SRI must be much higher than the Greenwood frequency of the turbulence being

encountered for the field estimations to be accurate [38].

An extended Kalman filter (EKF) (see Section 2.4.2.2) has been used to estimate

the field from the individual interferograms produced by a temporally phase-shifted SRI

[41]. This improves performance at lower sampling rates, allowing effective operation of
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Figure 10: Conceptual Spatially Designed SRI [37]

temporally phase-shifted SRI designs under a broader range of turbulence conditions, in

particular under increased Greenwood frequency conditions.

2.2.3 Spatial SRI. A spatially phase-shifted SRI is similar to a temporal SRI

except that instead of creating multiple reference beams by shifting the phase of the reference

beam temporally, a spatially phase-shifted SRI splits the incoming light into eight parts -

four beacon and four reference. Each of the four reference beams have different optical

paths and are shifted from each other by 0, π/2, π, and 3π/2 as shown in Figure 10. Each

of the four different reference beam paths is combined with a beacon path and then all four

interference patterns are measured simultaneously.

Figure 12 depicts all four interference patterns on a single photo-detector. The four

measurements are then processed into an array of phases via Equation (12). The advantage

of a spatially phase-shifted SRI is that all four measurements are taken simultaneously.

The disadvantages are the added complexity of the additional optical paths, the difficulty in
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Figure 11: Frame sequence for a temporal SRI [38]. The black outline indicates the extent
of the camera. The blue circle is the area of the pupil interferogram.
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Figure 12: Spatial SRI [34]

getting everything aligned properly, and the loss of intensity caused by dividing the incoming

beam into eight parts instead of two [10].

2.2.4 SRI performance. The accuracy of the SRI WFS is characterized by the

estimation Strehl ratio SN

SN =
1

1 + SNR2
M

(13)

where SNRM is the modulation signal-to-noise ratio. SNRM is the key quantity for SRI

WFS performance [5]. For a simplistic model SNRM is defined as

( 4
Nsplit

)2IrIs

( 4
Nsplit

)2IrIs + 4(σ2
rd + σ2

q + σ2
shot)

(14)

where σ2
rd is the variance of the camera read noise, σ2

q is the variance of the quantization

noise, and σ2
shot is the variance of the shot noise [37]. Nsplit is the number of branches

that the optical field is split into. For a temporally-shifted SRI Nsplit = 2, while for a

spatially-shifted SRI Nsplit = 4.

16



thick ultra-low expansion glass strong back

thin glass facesheet

(1 mm thick ultra-low

expansion glass)

PMN actuators with

±2µm dynamic range

Figure 13: Continuous Facesheet DM [40]

2.3 Wavefront Correction Devices

There are many different wavefront correction devices which all control the wave-

front by varying different portions of the optical path. DMs are the only type of corrector

discussed here as they are the device intended for use in this project.

2.3.1 Continuous Facesheet Deformable Mirrors. A DM as depicted in Figure 13

is an array of actuators or pistons covered by a sheet of flexible reflective material. The

actuators deform the mirror so that parts of the mirror are higher than others, making the

optical path shorter for the higher parts. The surface of the mirror is continuous, causing

a smooth transition for the phase corrections. Using a continuous facesheet DM has both

advantages and disadvantages. An advantage is that the DM nicely smooths out the discrete

solution created by a digital controller. A disadvantage is that the DM cannot make the

instantaneous transitions necessary to compensate for areas in the field which have phase

discontinuities (phase discontinuities are covered in Section 2.6.

2.3.2 Segmented Deformable Mirrors. Segmented mirrors have individual mirror

segments controlled by piston-like actuators as in Figure 14. The segments are raised and

lowered and create a constant phase correction to that area of the mirror. This is a drawback

in that only the first Zernike mode (piston) over the segment is corrected and any tip/tilt

or higher-order Zernike modes that a field may have over a segment is uncorrected. There

is also some performance loss due to the diffraction effects of the edges of all the mirror

segments as well as some small loss due to the spacing between mirror segments. The
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Figure 14: Segmented DM [40]

advantage of a segmented mirror, however, is in its ability to emulate discontinuous phase

shifts. The correction applied to the field does not have to be unwrapped since a segmented

mirror handles the unnecessary 2π shifts of an unwrapped field without a problem. This

makes a segmented mirror very simple to implement with an SRI which gives the phases of

a field. Using deterministic control, the phases are simply scaled by a gain and applied to

the segmented mirror.

Segmented mirrors do exist that have multiple actuators per segment allowing the

segments to tilt. This allows the mirror to correct the tip and tilt of the field over a specific

segment, but higher order Zernike modes are not addressed and the adverse diffraction

effects of the segment edges are encountered. In this case, the tilt of the field over a segment

would have to be determined and appropriate controls applied to the mirror.

2.4 Stochastic Control

Control is the heart of an AO system. It does not matter how good the WFS or

wavefront corrector is if the controller connecting the two is insufficient. Conversely, while

a good controller cannot make up for an inadequate WFS or wavefront corrector, it can at

least determine the best control possible given the limitations of the other elements of the

system.

The controllers of conventional AO control systems have been essentially deterministic

in that they get input from the WFS, multiply this input by a gain, and then apply that

output to the wavefront corrector. Beyond trying to minimize certain noise effects, they
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make no attempt to treat the system as stochastic. The major element of this project is to

consider the AO system as a stochastic process and control the system accordingly.

“In the mathematics of probability, a stochastic process or random process is a process

that can be described by a probability distribution.” [46] In trying to control a stochastic

process, it is reasonable to divide problems into modeling, estimation, and control. While

adequate coverage of the subject would require rewriting the textbooks, a brief description

of the pertinent background material is presented.

2.4.1 State Space System Representation. Systems are modeled using state vari-

ables. This is shown in Figure 15, where x(t) is the state space vector, the value of which

is known as the state of the system. The array B describes how the control inputs u(t)

affect the states, HT models the relationship between the states and the output z(t), and F

describes the linear dynamics of the system. States of the system do not have to be known

identifiable parameters of the system (although they usually are); they simply must be a

set of variables which adequately describe the system behavior [31]. Moreover, there can

be several state spaces, all of which adequately describe the system. Designers can choose

which state space is most amenable to the design process.

2.4.2 Stochastic Modeling. The key to good control design is developing an ac-

curate model of the system to be controlled. In stochastic modeling, models are built

incorporating both the deterministic physical system as well as the stochastic noise influ-

ences on that system. In the adaptive optics model, the noise sources are the effect of

atmospheric turbulence and the other sources of noise identifiable in the system such as

shot and detector noise. These noise sources should be characterized based on existing data

and validated physics in order to create the best model possible.
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2.4.2.1 Gauss-Markov State Variables. As part of a stochastic system, a

state variable will never be known, but instead have a probability density function (PDF)

which can be estimated. Designers strive to choose state variables in such a way that they

are Gauss-Markov. Being Gaussian allows the PDF of the variable to be fully described by

a mean and variance. Being Markov implies that the future behavior of a variable is only

dependent on its previous state, relieving the system from maintaining the entire time series

of previous state information.

Once chosen, the state variables are vectorized into an N-dimensional vector x(t)

where N is the number of state variables and the bold typeface indicates the vector nature

of x(t). The PDF of x(t) is described by x̂(t) and P(t), where x̂(t) is the N-dimensional

best estimate of x(t) (or mean, since it is Gaussian) and P(t) is the N × N state covariance

matrix. In the covariance matrix, the diagonal terms are the variances of each variable, and

the non-diagonal terms are the covariances between different variables.

2.4.2.2 Model types. The system is modeled as the continuous-time differ-

ential equation ẋ(t) = f(x(t),u(t),w(t), t) so that the states’ dynamics are functions of the

states, inputs u(t), system dynamic noises w(t) and time t. The output of the system is a

function of the state variables and time, z(t) = h(x(t), t). All systems are modeled as either

linear or non-linear. For the systems considered for this project, we will restrict ourselves to

linear time-invariant (LTI) models or non-linear time-invariant models that can be readily

linearized. However, investigation into non-linear effects is conducted only as needed.

Linear systems and Kalman filters. If the system is adequately repre-

sented with LTI models, then the system is well represented by the differential equation

ẋ(t) = Fx(t) + Bu(t) + Gw(t) (15)

where F represents how the states change over time, B represents how the inputs affect

the states and G represents how the system noises affect the states. Given that noisy

measurements are available from sensors, the output of the system becomes

z(t) = H(t)x(t) + v(t) (16)
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where H(t) determines the output from the states and v(t) is measurement noise.

The solution to Equation (15) is

x(t) = Φ(t, t0)x0 +

t∫

t0

Φ(t, τ)B(τ)u(τ)dτ +

t∫

t0

Φ(t, τ)G(τ)dβ(τ) (17)

where Φ(t2, t1) is the state transition matrix which describes how the system states change

from time t1 to time t2. Details of this are left to the applicable text [28]

Equivalent discrete-time system model. In order to implement the

system models using digital computers, an equivalent discrete-time system model must

be developed from the continuous-time model. Again, details are well covered applicable

texts [28], but the result is

x(ti+1) = Φ(ti+1, ti)x(ti) +




ti+1∫

ti

Φ(ti+1, τ)B(τ)dτ


u(ti) +

ti+1∫

ti

Φ(ti+1, τ)G(τ)dβ(τ) (18)

x(ti+1) = Φ(ti+1, ti)x(ti) + Bd(ti)u(ti) + wd(ti) (19)

where Bd(ti) is defined as Bd(ti) =
ti+1∫
ti

Φ(ti+1, τ)B(τ)dτ and wd(ti) is a zero-mean discrete

white-Gaussian process with variance Qd.

Linear Kalman Filter. From the equivalent discrete-time model, a

recursive estimation method known as a Kalman filter can be developed for discrete-time

systems. The development and solution to the optimal linear Kalman filter is well docu-

mented in reference [28] and is only summarized here.

A discrete-time Kalman filter is illustrated in Figure 16 and has two parts. The first

is the propagation of the state variable estimate vector and covariance matrix between

measurements. The second is the updating of the state variable estimate and covariance

matrix when measurements are taken.

In the propagation portion of the filter, the state estimate vector is propagated one

frame into the future by the state transition matrix Φ(ti, ti−1) and combined with the effects

of any system inputs u(t). The state transition matrix and the dynamic noise characteristics
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Figure 16: Kalman filter illustration [30]

control the propagation of the covariance matrix. The equations for this are

x̂(t−i ) = Φ(ti, ti−1)x̂(t+i−1) + Bd(ti−1)u(ti−1)

P(t−i ) = Φ(ti, ti−1)P(t+i−1)Φ
T(ti, ti−1) + Gd(ti−1)Qd(ti−1)GT

d (ti−1)

where the ‘-’ and ‘+’ superscripts indicate times just before and after an update within

the Kalman filter. Here Gd(t) is the matrix representing how the system noises affect the

covariance matrix P.

In the update portion of the filter, a residue is formed by subtracting the best estimate

of what the measurement ẑ(t) from the measurement itself z(t). The updated measurement

is then formed by summing the old estimate x̂(t−i ) and the residue weighted by the Kalman

gain K(ti), a pre-computed matrix based on the covariance matrices of the old estimate

and new measurements. The Kalman gain matrix also controls the updating of the state

covariance matrix. The equations for this are

K(ti) = P(t−i )HT(ti)[H(ti)P(t−i )HT(ti) + R(ti)]−1 (20)

x̂(t+i ) = x̂(t−i ) + K(ti)[z(ti)−H(ti)x̂(t−i )] (21)

P(t+i ) = P(t−i )−K(ti)H(ti)P(t−i ) (22)
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where H(t) is the matrix that converts the best estimate of the state of the system to the

best estimate of the output being measured ẑ(t) = H(t)x̂(t), R(t) is the covariance matrix

of measurement noises and z(ti) is the measurement for the ith frame.

The implementation of a Kalman filter often simplifies in practice. In uncontrolled

systems, u(t) = 0. A fixed frame rate and time-invariant system dynamics make Φ(ti, ti−1),

and Qd(ti) temporally constant. The measurement matrix H(t) is usually time-invariant.

Sometimes R(t) is time-invariant, which tremendously simplifies matters since, in steady-

state, K(ti) is constant and pre-computable. In the simplest case where all these things are

true, a Kalman filter reduces to simply taking a weighted average of the current estimate

and information from new measurements at each update.

Non-Linear systems. Given that a goal of this research is to determine

a valid model for the system, it may be determined that nonlinear models are required. In

this case, either nonlinear filtering, or more likely, linearized filtering such as the extended

Kalman filter (EKF) would be appropriate [29].

An EKF works largely the same as a linear Kalman filter, except F and H have to be

recalculated as

H[ti; x̂(t−i )] ≡ ∂h[x(ti), ti]
∂x

∣∣∣∣
x=x̂(t−i )

and F[t; x̂(t/ti)] ≡ ∂f [x,u(t), t]
∂x

∣∣∣∣
x=x̂(t/ti)

to account for the non-linearities. Development, solution and application of EKFs are

covered in [29].

2.4.3 Stochastic Estimation. Stochastic estimation is the process of estimating

the state variables of the system based on an adequate system model. Kalman filters are

the most well-known stochastic estimators which optimally combine new measurements

with current estimates of state variables to determine an updated estimate of these state

variables.
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2.4.4 Stochastic Control. In contrast to deterministic control methods, stochas-

tic control methods provide robust solutions in the presence of system uncertainty. Im-

provements in stability and performance can be achieved by adequately accounting for the

unmodeled effects on either the system dynamics or measurement devices.

2.4.5 LQG. The design process of developing a stochastic controller may be

intractable without some bounds. This involves properly defining what makes a system good

or bad in terms of a system “cost,” under what conditions this “cost” should be minimized,

what kinds of system models are used and what types of noise sources are assumed. Often

“cost” is intuitive, but it needs to be defined in order to regiment the design process and

determine what “optimality” means for the problem at hand.

In a stochastic control design, representing the system as linear, costs as quadratic,

and noises (both system and measurement) as Gaussian (LQG) has proven to be of great

benefit. An LQG system requires that the system model be linear, have a quadratic cost

structure for the control and have Gaussian noise inputs [30].

A quadratic cost function takes the form

J = E

[
N∑

i=0

[
xT (ti)X(ti)x(ti) + uT (ti)Γ(ti)u(ti)

]
+ xT (tN+1)Xfx(tN+1)

]

where mathbfX(ti) is a weighting matrix defining the relative cost associated with various

states and Γ(ti) is a weighting matrix defining the cost of various control inputs [30]. The

quadratic nature of the cost function is in the squared terms of both states and control

inputs.

The primary benefit of satisfying the LQG assumptions is a tremendous simplifica-

tion of the mathematics of the optimization process. The simplified mathematics allow a

regimented and disciplined design process. While convenience for the designer is appealing,

the assumptions must also be adequate, and the design process must yield quality products.

Thankfully, most systems can be adequately represented by a linear model, most design

requirements can be adequately reflected as quadratic costs and most noise sources are rea-

sonably Gaussian (or can be represented by linear shaping filters and thus satisfying these
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Figure 17: LQG controller illustration [30]

same assumptions). Even more importantly, LQG designs usually work well and produce

exceptional results.

Given that the LQG assumptions are valid and stochastic estimation has been used to

provide the controller with optimal state estimates, the certainty equivalence property can

be applied resulting in a deterministic optimal control solution. “The optimal stochastic

controller for a problem described by linear system models driven by white Gaussian noise,

subject to a quadratic cost criterion consists of an optimal linear Kalman filter cascaded

with the optimal feedback gain matrix of the corresponding deterministic optimal control

problem.” [30] This simplifies the design process into two steps as shown in Figure 17:

1. Design an optimal stochastic estimator using the Kalman filter

2. Separately design an optimal deterministic controller for the original system.

Under LQG assumptions, the optimal feedback for the system is given by

u∗(ti)[x̂(t+i ), ti] = −G∗
c(ti)x̂(t+i ), (23)

where G∗
c is the optimal feedback controller gain given by

G∗
c = [Γ(ti) + BT

d (ti)Kc(ti+1)Bd(ti)]−1[BT
d (ti)Kc(ti+1)Φ(ti+1, ti)]. (24)

In Equation (24), Γ is a weighting matrix in the cost function of the applied control, BT
d

is the discretized control matrix and Kc is the solution to the backward Riccati difference
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equation

Kc(ti) = X(ti) + ΦT(ti+1, ti)Kc(ti+1)Φ(ti+1, ti)

−[Φ(ti+1, ti)Kc(ti+1)Bd(ti)][Γ(ti) + BT
d (ti)Kc(ti+1)Bd(ti)]−1

×[Bd(ti)Kc(ti+1)Φ(ti+1, ti)]

where X(ti) is a weighting matrix on state error in the cost function of the system.

In the event that the LQG assumptions are invalid (such as a nonlinear system model),

then nonlinear control methods can be employed but at a significant increase in complexity.

Alternatively, assumed certainty equivalence can be applied that again reduces complexity

at the expense of suboptimal control.

2.5 Continuity of the Optical Field

Given optical propagation in an unbounded continuous medium with smoothly varying

stochastic refractive index, the optical field transverse to the direction of propagation U(r)

is described by the stochastic Helmholtz equation [1].

∇2U(r) + k2n(r)U(r) = 0 (25)

where ∇2 indicates the Laplacian operator ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , U(r) is the field, k = 2π
λ where

λ is the wavelength of light, n(r) is the index of refraction and r = (x, y, z) denotes a point

in space.

Taking U(r) and n(r) to be defined everywhere, the Laplacian is defined everywhere

since Equation (25) can be rearranged to

∇2U(r) = −k2n(r)U(r). (26)

Since the Laplacian exists, the partial derivatives ∂
∂xU(r), ∂

∂yU(r) and ∂
∂zU(r) must also

exist and be continuous.
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Since the partial derivatives exist and are continuous, the function U(r) must be

continuous. Since U(r) is continuous, the real component <[U(r)] and imaginary component

=[U(r)] of U(r) are continuous.

2.6 Phase Discontinuities

Phase discontinuities arise in two forms: unwrapping and branch points (as discussed

in Sections 2.7 and 2.8. These discontinuities arise because of the way phase is defined.

Similar to the development of Equation (11), phase is defined as

φ(r) =





tan−1
(=[U(r)]
<[U(r)]

)
∀ <[U(r)] 6= 0

π
2 ∀ =[U(r)] > 0,<[U(r)] = 0

−π
2 ∀ =[U(r)] < 0,<[U(r)] = 0

Undefined ∀ =[U(r)] = 0,<[U(r)] = 0

(27)

where the inverse tangent function is the four-quadrant inverse tangent yielding phases on

the range (−π, π], as shown in Figure 18.
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Figure 19: Phases for a single row of a wrapped optical field. The phases are re-
stricted to (−π, π] from the MATLAB angle function which can be expressed as angle(z) =
atan2(imag(z),real(z)) where z is the complex variable given to the function.

2.7 Unwrapping Phase Discontinuities

Unwrapping problems occur where the real portion of the field <[U(r)] is negative

and the imaginary portion of the field =[U(R)] transitions between positive and negative.

At these points, the phase jumps 2π. This is a result of the fact that the tangent function

is modulo 2π. That is, tan(φ) = tan(φ + 2πk) where k is any integer. This problem can

be resolved by adding or subtracting 2π from areas of the field, thus smoothing the field.

Figure 19 shows a row of phase angles from a wrapped field, while Figure 20 shows the same

row after unwrapping. Figure 21 shows a simplistic unwrapping process (no branch points)

in four steps.

2.8 Branch Points

Branch points are an optical phenomenon which is manifested as the curl of the phase

φ(x, y, t) of a light field is non-zero about a point [18]. In mathematical terms,

(∇×(∇φ))(x, y, t) 6= 0 and
∮ ∇φ(x, y, t) 6= 0 where the closed integral follows a path around
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Figure 20: Phases for a single row of an unwrapped optical field. The phases are no longer
restricted to (−π, π]. Integer multiples of 2π are added to the phase in order to smooth the
phase in a process known as unwrapping.

the single branch point. Thus, starting at a point A and integrating phase differential along

a closed path containing a single branch point back to A yields a different phase than at the

start. Since point A has not changed, the integration along the closed path will necessarily

be some positive or negative integer multiple of 2π. In practice, integrating phase gradients

along a path around a point is the way branch points are discovered [14]. When integrating

clockwise around a closed path, a positive result indicates a positive branch point. Negative

results indicate negative branch points. As such, if a closed loop were to contain both a

positive and negative branch point, the effects of the two branch points would have opposite

effects and the path integral around the loop would evaluate to zero. Integrations resulting

in higher multiples of 2π indicate the presence of multiple branch points of the same polarity.

In attempting to detect branch points, the closed paths are kept as small as possible in order

to pinpoint their location. Due to the discretization of digital photo-detectors, paths can

never be smaller than the size of a single pixel.
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2.9 Rotational and Irrotational Field Components

Fields containing branch points are called rotational because there is at least one

point with a non-zero curl. The term rotational is appropriate because the gradient of

the field forms a vortex, or rotation about the branch point as shown in Figure 22. An

irrotational field is one without branch points so that there are not any points of non-zero

curl. Such a field would have gradients which do not rotate about any points, as shown in

Figure 23. The phase of a rotational field can be divided into rotational and irrotational

components [18]. The irrotational component is, of course, irrotational while the rotational

component contains all the rotational effects of branch points.

2.10 Difficulties of Branch Points

2.10.1 Wavefront Reconstruction. The presence of a rotational component in the

optical field’s phase makes effective AO very difficult. First of all, the rotational component

is difficult for most systems to detect. Standard systems using a S-H WFS and an LS

reconstructor miss the rotational portion of the field. This is the reason the rotational

component of the field is sometimes called “the hidden field” [16].

2.10.2 DMs and the irrotational phase. DMs correct the phase of an optical field

by altering the surface of a mirror increasing the optical path lengths for some portions of the

field and decreasing it for others. The height of the mirror at any point is fixed (for a given

time) and the integral of mirror height differentials over a closed path must then equal zero.

As a result, the DM is an irrotational surface and well-suited to compensate for irrotational

phase errors. To compensate for rotational fields, DMs must use 2π discontinuities where the

DM height changes 2π from one pixel to the next in order to implement phase corrections

which account for the effects of branch points in the optical field. These discontinuities

begin and end at branch points and are known as branch cuts.

2.11 Branch Cuts

To compensate for the non-zero curl of phase differential around branch points, a

concept of branch cuts has been developed. A branch cut is simply an artificially determined

line in the detector plane where a discontinuity is forced into the φ(x, y, t) field. Branch cuts
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begin and end at either branch points or the aperture edge (in effect placing a branch cut

just off the aperture at that point). In any path around a branch point, the path will cross

the branch cut. The discontinuity encountered at the branch cut is the opposite multiple

of 2π than the one encountered in the curl so that the discontinuity at the branch cut

counteracts the curl encountered around the branch point and the gradients along the path

sum to zero.

Properly placed branch cuts have the effect of making the entire field phase irro-

tational, allowing phase corrections needed by the field to be implemented by a DM. A

continuous facesheet DM implements the phase cut by forming a continuous slope from one

pixel to the next over the 2π discontinuity. While non-ideal, this is a significant improvement

over simply ignoring the rotational portion of the field [3].

2.11.1 Branch cut impact on DMs. Interestingly, segmented DMs deal with branch

cuts very easily. As surface discontinuities are easily implemented, phase corrections are

not unwrapped. Leaving the phase wrapped implies that there is a discontinuity leading to

every branch point. This discontinuity serves as a branch cut, allowing the DM to correct

for the rotational portion of the field.

Continuous facesheet DMs, however, unwrap the phase in order to avoid unnecessary

phase discontinuities and make the DM surface as smooth as possible. In this case, branch

cuts must be added to create an irrotational correction. Since continuous facesheet DMs

cannot implement a surface discontinuity, an area of the DM on either side of the cut

cannot achieve the height required for the desired phase correction. As such, a great deal of

work has been put into determining the pairing of branch points and placement of branch

cuts in order to minimize the impact on system performance. Usually, designs attempt

to minimize the length of the cuts while placing the cuts where the least illumination

is encountered. Mitigating the effects of branch cuts on system performance in an SRI

architecture is discussed in Chapter V.

2.12 Spatial sampling requirements

In order to adequately reflect the optical field and prevent aliasing, the field must be

spatially sampled at a minimum of twice the highest spatial frequency. The effect is to
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assure that adjacent subapertures in the WFS are within π of each other so that when the

field is unwrapped the subaperture phases are properly assigned.

2.13 SRI Development

The SRI has been developed at SOR and tested using their Atmospheric Simulation

and Adaptive-optics Laboratory Testbed (ASALT) lab setup. The progress has been sub-

stantial and, while still effectively a first-generation sensor, the SRI is an established tech-

nology. Initial designs used fiber amplifiers to boost the strength of the reference beams.

Current designs are efficient enough that the fiber amplifier (and the accompanying amplifi-

cation noise) can be eliminated from the design [36]. By removing the optical fiber amplifier,

the single mode fiber used as a spatial filter can be as short as 1 cm which further simplifies

the design.

2.14 Alternative viewpoint of phase discontinuities

An alternative way of looking at phase discontinuities is to consider the real and

imaginary portions of the field <[U(r)] and =[U(r)]. As each is continuous, they form a

contour of values in the (x, y) plane. Areas of a contour in the (x, y) plane with positive and

negative values are necessarily separated by a line (or possibly an area) where the contour

is zero [2]. The intersection of the contours with the zero plane (solutions to <[U(r)] = 0

or =[U(r)] = 0) are continuous paths. The paths may be closed within the aperture or

extend from edge to edge, but they are continuous. If the contour only touches the zero

plane but does not cross it, the intersection is a point (or a line) which is effectively a closed

continuous path of zero area.

Figures 24 and 25 were generated by the MATLAB code in Section A.1 of the appendix

and show slices through the real and imaginary portions of an example field (shown in Figure

21) where the portions of the field are zero. This field is a result of weak turbulence and

has no branch points.

Looked at from this perspective, lines where it is necessary to unwrap the field are

apparent. The field is segmented into regions of positive and negative imaginary field

components by a line where the imaginary component of the field is zero. The field is
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similarly segmented into positive and negative real component regions by a line where the

real component of the field is zero. The field should be unwrapped everywhere along lines

of zero imaginary component where the real component of the field is negative. Some

unwrapping lines may extend from one edge of the aperture to another. Others may start

at an edge but terminate where the real portion of the field transitions from positive to

negative (this is a branch point as discussed below). Still others may being and end at

branch points.

Branch points are seen as places where <[U(r)] = 0 lines and =[U(r)] = 0 lines

cross. As the lines cross, both are zero, yielding zero intensity. Furthermore, around the

crossing point there are four sections with the real and imaginary portions of the field

positive/positive in one section, positive/ negative in another, negative/negative in a third

and negative/positive in the fourth. Thus the phase of the field sweeps through all four

quadrants as the phase is evaluated around a small closed path around the intersection

point, and an integral of phase differentials around that path would be non-zero. Thus the

curl of the phase at the intersection is non-zero making the point a branch point. Figure 26

shows the lines where the real and imaginary portions of the field used for Figures 24 and

25 are zero overlaid on a single plot. Although the contour lines touch in places, as there

are no branch points, they never cross.

Increasing the strength of the turbulence induces branch points. Branch points begin

to occur when the turbulence becomes strong enough that the Rytov number is approx-

imately 0.2 or greater [3]. Figure 27 shows an plot of the two contour lines for a field

generated by turbulence with Rytov variance 0.1 where there are no branch points. Figure

28 shows a plot of the two contour lines for a field corrupted by turbulence with Rytov

variance of 0.4. In this case branch points are present.

The positions of the branch points are determined independently by the MATLAB

code bpfinder() included in Section A.2 of the appendix. In some cases it appears that

there are branch points where the contour slice lines only touch but do not cross. This is

a case where the contour slice lines actually do slightly overlap, but the discrete nature of

the sampling of the optical field makes it appear that they are instead lying on top of each

other.
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The contour slice mapping gives unique insight into how branch points should be

paired. Consider the case where a <[U(r)] = 0 line and =[U(r)] = 0 line are both closed

paths (so that they do not extend to the edge of the aperture.) Then the number of

intersections (if any) between those two paths is necessarily even. This shows how to pair

up the branch points generated by the crossings of the contour slice lines. A branch point

should be paired with an adjacent crossing of the same <[U(r)] = 0 and =[U(r)] = 0 lines.

Consider the simplistic case where <[U(r)] = 0 lines and =[U(r)] = 0 lines are overlapping

circles. A pair of branch points are easily identified as the two places where the circles cross.

Temporally, <[U(r)] and =[U(r)] are continuous making the contours undulate smoothly.

Thus <[U(r)] = 0 and =[U(r)] = 0 lines drift and the points at which their lines cross

wander. Consider the case where the real and imaginary contour slices form two circles as

in Figures 29, 30 and 31. The circles start off overlapped which forms two branch points.

As they move apart the branch points move together. Finally, the two circles no longer

overlap but only touch, resulting in the elimination of that pair of branch points.

Since branch points occur where <[U(r)] = 0 and =[U(r)] = 0 lines cross, both

<[U(r)] = 0 and =[U(r)] = 0 at branch points. Thus the intensity of the field is necessarily

zero at a branch point. While zero intensity is a necessary condition for a branch point, it is

not a sufficient condition. This is illustrated by the case where <[U(r)] = 0 and =[U(r)] = 0

lines touch but do not cross. At the point they touch, both the real and imaginary portions

of the field are zero yielding a zero intensity. As they do not cross, however, the point is

not be a branch point.

2.15 Chapter conclusions

The basics of adaptive optics systems are well documented as are the foundational

precepts of strong turbulence. The additional difficulties of operating AO systems under

the more challenging conditions of strong turbulence are less well documented. Taking

the existing experience in adaptive optics and the understanding of the effects of strong

turbulence, this research develops an AO system which can operate effectively under strong

turbulence conditions.
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In particular, this research utilizes the understanding of conventional AO system de-

signs, the basis of stochastic modeling and estimation, and the basic building blocks of

a linear Kalman filter to argue that AO systems can be looked at as fixed gain Kalman

filters which estimate the phase of atmospherically aberrated light. The work goes on to

consider the architecture of conventional systems and demonstrate why their performance

degrades under strong turbulence conditions. Finally the nature of branch points and the

localized pairing of branch points are building blocks upon which an unwrapper designed

to be effective under strong turbulence conditions is developed.
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A − Wrapped B − Center column unwrapped

C − Half unwrapped D − Fully unwrapped

Figure 21: An unwrapping process. First a single column is unwrapped in the center of
the field. This avoids spurious data in the corners of the field due to the circular mask of
the aperture. Next the field is unwrapped from the center column to the outsides. The
right half is unwrapped first, then the array is flipped and the remaining half is unwrapped.
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Figure 22: Phase gradients for a field containing branch points.
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Figure 23: Phase gradients for a field without branch points.
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Figure 24: A slice through the real portion of an optical field where the real portion of
the field equals zero. The optical field is a 50× 50 section of an optical field generated by
Wavetrainr of an idealized point source through weak atmospheric turbulence.
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Figure 25: A slice through the imaginary portion of an optical field where the imaginary
portion of the field equals zero. The optical field is the same 50×50 section of an optical
field depicted by Figure 24.
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Figure 26: An overlay plot of the real and imaginary contours slices in Figures 24 and 25.
Note the areas where two similar contours separated by an opposite contour (blue-red-blue)
are only two pixels apart. This indicates that the field is at best critically sampled.
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Figure 27: A sliced contour plot for a field corrupted by atmospheric turbulence with
Rytov number 0.1. Note the increased spacing between contour lines as compare with
Figure 26 indicating a more comfortable spatial sampling rate.
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Figure 28: A sliced contour plot for a field corrupted by atmospheric turbulence with
Rytov number 0.4. Note the presence of branch points in the field.
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Imaginary Contour = 0

Real Contour =0

Paired Branch Points

Figure 29: Frame 1 - A depiction of real and imaginary contour slices and the branch
point produced where they intersect.

Imaginary Contour = 0

Real Contour =0

Paired Branch Points

    (moving together)

Figure 30: Frame 2 - Note that the branch points are still paired similar to frame 1 in
Figure 29, but they are moving closer together as the circles separate.
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Imaginary Contour = 0

Real Contour =0

Paired Branch Points

No Branch Point

Figure 31: Frame 3 - The contours have moved to the point where the lines of the circles
no longer cross but only touch. Thus the circles do not cause a branch point, but new
branch points are created by the real circle and an imaginary portion = 0 line that spans
the aperture from edge to edge.
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III. Adaptive optics, the optical Kalman filter

3.1 Introduction

The intent of this chapter is to document what I believe is the proper treatment of

AO from a controls perspective. More specifically, atmospheric turbulence should

be considered a stochastic system which induces aberrations into an optical field. An AO

system creates an estimate of those aberrations and applies them with a wavefront correction

device such as a DM.

3.2 Estimation and correction versus control

Historically, AO systems have been treated as controllers in that they are designed to

minimize or control the effects of turbulence. A block diagram of a conventional controller

utilizing a DM as a control element is shown in Figure 32. This controller uses a leaky

integrator where u(ti) = αc(ti−1 + βφ(ti) where α ≈ 0.99 is one minus the “leak” of the

system and β ≈ 0.4 is the proportion of the error signal being integrated. The error signal

is the phase output from the WFS and the output of the controller is the phases to be

corrected by the DM.

A stochastic model of the system alone is depicted in Figure 33. Here the effects of

atmospheric turbulence are the result of a vector of white-Gaussian noise inputs driving an

integrator with a (perhaps non-linear) feedback f(x1(t), t). The result is the state-space

x1(t) which completely defines the optical field prior to reflecting from the DM. After the

DM, the state space will be x2(t) which will be equivalent to x1(t) except shifted by the

phase applied to the DM.

As discussed in Chapter II, optimal stochastic control of such a system is accomplished

by measuring the outputs of the system, applying a Kalman filter to the measurements and

then using a proportional integrator (PI) controller to achieve the desired type-1 controller

property. This is depicted in Figure 34 where φCorr is the phase of the optical field after

being corrected by the DM.

Expanding the Kalman filter into the block diagram of a linear or at least linearizable

Kalman filter is depicted in Figure 35 along with the expansion of a PI Controller into its

block diagram form.
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Figure 33: Stochastic model of turbulence with DM

The filter needs to account for the control inputs of the system. This is accomplished

by adding the phase applied to the DM to the signal at the beginning of the filter. A more

conventional control structure where the control input to the system was able to be applied

before the integral in the stochastic system model would instead add the integral of the

input with the form
ti∫

ti−1

Φ(ti, ti−1)x̂(t+i−1)dt [28].

Interestingly, isolating the right hand portion of this block diagram as in Figure 36

highlights that in this case the output of the PI controller is simply an estimate of φ̂Turb

from the middle of the Kalman filter before re-applying the effects of the DM in order to

create φ̂WFS .

Thus, such a system would effectively take an estimate of an estimate and is labeled
ˆ̂
φTurb(ti). More specifically, it would take an estimate of a Kalman estimate. As a Kalman

47



SRI

Kalman Filter
f

Corr
(t) f

WFS
(t

i
) u(t) = f

DM
(t)f

Turb
(t

i
)

PI ControllerWFS

+

f
Turb

(t)

-

DM

^

Figure 34: Optimal control structure block diagram

SRI +
-

+

Kalman Filter

f
Turb

(t
i
)f

Corr
(t) f

WFS
(t

i
)

+

K
+

+

F t-1

f
Turb

(t
i
)

b

u(t
i-1

)

-+ +
+

PI ControllerWFS

+

f
Turb

(t)

-

DM

^

a t-1

ZOH
f

DM
(t)

Figure 35: Optimal control structure

filter is an optimal estimator, taking a second estimate is patently unnecessary and poten-

tially degrading to the system.

The essence of the problem is in the placement of the controlling element in the system.

Being situated after the integrating operation in the stochastic model instead of before has

the effect of correcting the system instead of controlling the system. As this differentiation

is not widely used in control literature, it is defined here for the purposes of this research.

A controlling input enters the stochastic model at the summing junction before the integral

operation while a correcting input enters the model at a summing junction after the integral

operation. A controlling and correcting system are shown in Figure 37.

In the specific case of AO, the intent is to flatten the wavefront as much as possible.

In control terms, the phase of the optical field should be regulated to zero (or a constant

piston) after reflection from the DM. The DM deforms in such a way that the phase of

the optical field after reflecting off of the DM is effectively the phase of the optical field
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before encountering the DM minus the input phase applied to the DM. This is why DMs

are symbolized as summing junctions with a negative sign by the input to the DM in the

various figures depicting AO systems. Since the DM effectively corrects the optical field by

subtracting whatever input phase it is given, the natural choice of control input to the DM

is the best estimate of the phase of the optical field striking the DM.

From this perspective, an optimal optical corrector is best depicted as in Figure 38.

This isolates the system as the aberrated optical field before it strikes the DM as shown in

Figure 39. The WFS measures the phase of the optical field and the Kalman filter creates

an optimal estimate of the phase of the field from the WFS measurements. The important

point here is that it recognizes the system as uncontrollable. This makes sense in that we

have no control over the turbulence received optical field. All we can do is correct or flatten

that field by applying the best possible inputs to the DM.

The problem with the AO system as a turbulence estimator is the lack of feedback

from the DM. The inclusion of the DM in an open-loop configuration instead of a closed-

loop configuration degrades the performance of the system because even with an optimal

estimate of the turbulence, any errors between what is commanded to be on the DM and

what is actually on the DM is undetected and therefore uncorrected by closed-loop feedback.

As an alternative, consider Figure 40. In the classic Kalman filter design shown in

Figure 40(a), the residual is the calculated difference between the measured turbulence

φWFS(ti) and the estimate of the turbulence φ̂Turb(ti). In the modified Kalman filter shown

in Figure 40(b), the residual is the phase of the optical field after being corrected by the DM.
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The residual is then measured by the WFS. Measuring the residual instead of calculating the

residual requires an element capable of performing a difference operation between a received

input and an estimation, thus creating the residual to be measured, which is exactly what

a DM does in an AO system.

Thus the DM is incorporated into a closed loop. Any errors which are encountered

between the DM commands and what is really on the DM are effectively incorporated with

the errors associated with the WFS measuring the post-DM optical field.

SRI

Kalman Filter

f
Turb

(t)

f
Turb

(t
i
) = u(t

i
)

WFS

+

f
Corr

(t)

-

DM

^

f
Turb

(t
i
)

ZOH

Atmospheric

Turbulence

System
f

DM
(t)

Figure 38: Block diagram of AO estimator
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Figure 40: Revised Kalman filter

The final block diagram is depicted in Figure 41 and is recognizable as having the

essentially the same form as the leaky integrator already being used in many AO systems,

with the Kalman gain K replacing the β and the Kalman state transition matrix Φ replacing

the α.

The above discussion may seem a very roundabout way of justifying what is already

being done, but there are several advantages in looking at the problem from this perspective.

First and foremost, by recognizing an AO system using a PI controller as a Kalman esti-

mator, the design process is justified because a Kalman estimator is an optimal estimator.

Rather than reexamine the problem looking at other design architectures, this perspective

justifies the architecture already being used and gives a rational for the effectiveness of the

current design. Secondly, it gives direction for the improvement of current AO systems

using a leaky integrator controller. Recognizing a leaky integrator as a fixed gain Kalman

filter, the way to improve performance is to remove assumptions and to refine the system
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model. The biggest assumption in a fixed-gain Kalman filter is that a fixed-gain is adequate.

System model inadequacies result from assuming that the system can be modeled by the

single state variable φ(ti) in a linear model. Adding states and exploring any non-linearities

in the system would improve performance.

The bottom line is that there are concrete identifiable ways of increasing the fidelity

of the system. Those improvements can be explored for their effectiveness and cost in terms

of computational burden and developmental and implementation expense.

3.3 Modeling the system

Effectively modeling the system is key to developing a good controller (or in this case

estimator). In a state-based system model, deciding on which states to use in modeling the

system is a good place to start.

3.3.1 System states. When choosing the states to model, the things to consider

are the system being modeled, what can be sensed about the system, and what states are

useful in controlling the system. At any point in time, an optical field can be described by

the amplitude and phase of the field. Adding an appropriate number of differential states of

amplitude and phase allows modeling of the system dynamics. The number of differential

states needed depends on the system and the sampling rate of the system. A system sampled

at a much higher rate than the dynamics of the system may be adequately modeled with

fewer differential states and may be modeled without any differentials at all.
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3.3.1.1 State Observability. What can be sensed about a system is known

as the observability of the system in control terminology. Phase, being the typical output

of a WFS is the most observable state. Differentials of phase are also observable, but less

so than the state directly being sensed. While not typically thought of as observable by an

SRI WFS, Section 3.4 discusses a way to derive the amplitudes of the signal and reference,

AS and AR respectively from SRI data.

3.3.1.2 State controllability. Phase is generally considered to be the only

controllable state in a standard AO system because the phase shift caused by the DM is the

only control available to an AO system utilizing a single DM. Multi-conjugate systems which

employ multiple wavefront correction devices are able to control amplitude, but are not

addressed in this research. While uncontrollable by a DM in a single conjugate AO system,

having an estimate of the amplitude of the optical field AS allows improved placement of

branch cuts into the less illuminated portions of the field.

3.3.2 System Dynamics. Referring back to Figure 39, the input w(t) is a noise

modeling the effects of atmospheric turbulence in aberrating the system. w(t) is a zero-

mean white Gaussian noise and has the effect of creating uncertainty between system states

at different times. In other words, even if system was known at time t, there will be

increasing uncertainty in the estimation of the system at time t + τ , where τ is some

time increment greater than zero. In a discretely sampled system, the system dynamics

are modeled by Qd(ti), which describes the effects of system noise on the growth of system

state uncertainties between samples. In order to examine Qd(ti), a simulation was performed

where a series of frames was generated and the changes in phase from the previous frame for

each point was recorded. In this simulation, 1000 25×25 subaperture frames were generated

with a log-variance of 0.5, DSA/r0 = 0.25, and sample rate fS = 44.6fG.

Log-variance and DSA/r0 were set to equal the baseline levels of simulations performed

elsewhere during the research. The log-variance is a scintillation index describing the spatial

variance of the log-amplitude of the optical field [1]. DSA is the diameter of the subaperture

and r0 is the atmospheric coherence length (sometimes known as Fried’s parameter) so that

DSA/r0 describes the ratio of subaperture size to the size of the atmospheric turbulence.
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Figure 42: Histogram of subaperture phase changes from frame to frame

This in effect describes the resolution with which the optical field is sensed. The sampling

rate was set to a nominal AO sample rate.

It should be pointed out that because of the modulo-2π nature of the measured phase,

the changes recorded were restricted to (−π, π]. Thus a point which had a phase of 0.9π in

one frame and then −0.9π the next would be interpreted as having changed +0.2π instead

of changing −1.8π. A histogram of the frame-to-frame changes is shown in Figure 42 and

describes the pdf of the phase changes from one frame to the next. The histogram is not

perfectly Gaussian but certainly has a zero-mean Gaussian shape with an approximate

variance of 0.583.

3.3.3 Measurement noise. Determining the uncertainty characteristics or noise pdf

of the output of an SRI is difficult. Consider Figure 43 where the evaluation of the phase of

a single sub-aperture in the wavefront is graphically depicted. Here the measurements are

the square of the distance between reference points and the point described by the phase

and amplitude of the field in the complex plane. The phase φWFS can then be determined
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Figure 43: Graphical depiction of SRI phase estimation

as the arctangent of the ratio between the differences, φ = tan−1[(I2 − I4)/(I1 − I3)] as

previously described in Equation (12).

Individual interferograms are well modeled as a measurement corrupted by read and

shot noises. The read noise is an artifact of the camera and is assumed to have a zero-

mean Gaussian pdf [23]. The shot noise is well-modeled as a Poisson process [13]. For the

purposes of this research, the signal is assumed to be strong enough that the shot noise can

be modeled as a zero-mean Gaussian pdf with a SNR of the square root of intensity of the

signal. The uncertainty of interferogram measurements I1 through I4 is depicted in Figure

43 by a double line, indicating that the actual values likely lie somewhere between the two

lines. The impact of this uncertainty in the interferogram measurements on the computed

phase φWFS is difficult to determine however in that the arctangent function used to convert

the interferograms into phase is highly non-linear.

Rather than determine a mathematical uncertainty of φWFS based on the interfero-

gram uncertainties, a Monte Carlo analysis was performed in a simulation of an SRI WFS.

Here a system is defined with a known signal amplitude and phase, reference signal am-

plitude as well as interferogram read noises generated by the MATLAB Gaussian number

generator. one million realizations of this system were executed in a MATLAB simulation.
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Figure 44: Empirical pdf of φSRI with moderate noise

Results were recorded as the difference between the phase output of the simulation and

actual φ and put into a histogram to generate an empirical pdf of the SRI phase output

error. The system was set up with the phase φ = π/4, signal and reference amplitudes

AS = AR = 1, read noise variance σ2
Read = 0.3, and a shot noise photons per intensity unit

of 60. Parameters are chosen to generate a reasonably noisy system. This simulation is read

noise dominated and has SNRs for the lower intensity interferograms of 1.9 while the higher

intensity interferograms have SNRs of 9.6. The result is Gaussian in nature and shown in

Figure 45 where it is compared against a Gaussian distribution with similar variance.

Only under the strongest noise conditions does the pdf become less Gaussian. Figure

45 shows the results from increasing the read noise to one where the SNRs vary between

0.58 and 3.2 for the interferograms. In this case the pdf is still Gaussian-like, but narrower

with higher tails than a Gaussian of similar variance would have.

The code to generate these plots is in Section A.3 of the appendix. From these plots

it is reasonable to treat the output from an SRI φSRI as a measurement of φ corrupted by

a zero-mean Gaussian noise.
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Figure 45: Empirical pdf of φSRI with high noise

The variance of the measurement noise may be impacted by the conditions of the

system. Conditions to be considered are the signal and reference amplitudes AS and AR,

signal phase angle φ, strength of the camera read noise σRead, and photons per intensity

unit Q. Empirical pdfs for measurement error were generated while parameters were varied

one at a time and the variance of the pdfs was recorded.

The first variable to examined is φ. As such, φ is varied from 0 to 2π and the variance

of the difference between φEst and φ is plotted in Figure 46. See Section A.4 in the appendix.

In Figure 46, conditions are similar to Figure 44 except for φ varying between 0 and 2π.

The flatness of Figure 46 was consistent for various noise conditions in both shot and

read noise dominated systems. From this it can be concluded that the variability of φSRI is

not dependent on φ.

Considering the other variables, the noise of the system is a summation of the shot

and read noise and the amplitudes AS and AR are strongly related to the signal strength.

As such the variance of the system is dependent on the SNR which in this case is essentially

the ratio of A2
R and A2

S to the dominant noise source.
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A simulation was performed which varied AR and AS under extremely high noise

conditions. ‘Truth’ interferograms were developed as

I1 = (AR + AS cosφ)2 + (AS sinφ)2 (28)

I2 = (AS cosφ)2 + (AR + AS sinφ)2 (29)

I3 = (AR −AS cosφ)2 + (AS sinφ)2 (30)

I4 = (AS cosφ)2 + (AR −AS sinφ)2 (31)

These interferograms were then corrupted by noise of strength σ2
Noise = (500002 + In)1/2

where the 50,000 accounted for the read noise of the measurement device and the In took the

shot noise into account. The system was read noise dominated at all points, with AR and

AS varied from 0 to 260 and 1300 respectively. 40,000 samples were taken at each point and

φEst was determined for each sample using the standard arctangent function of Equation

12. φErrors were determined as the difference between φActual and φEst. The variance of the

40,000 φErrors were plotted in a surface plot as shown in Figure 47.
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Figure 47: Variance of φSRI determined through Monte Carlo analysis

The curve of the surface suggests a 1/AR and 1/AS dependency and in fact the equa-

tion

σ2
phi = 3.29e

−ASAR
17500 (32)

seems to match the empirically measured variance, as shown in Figure 48. To be clear,

Equation (32) does not have a particular theoretical basis but is simply an equation found

to match the empirical results. The conclusion is that whenever AR or AS is small when

compared to the noise of the interferogram measurements, the quality of the measurements

is decreased. This makes sense because when the reference amplitude AR is small, the

interferograms are largely the same and it is more difficult to extract meaningful information

from the differences. When AS is small, a small error in the complex domain can lead to a

significant error in the phase domain.

The other observation of note is that the estimated variance is really quite small

except where AR or AS are small. This highlights the relative noise immunity of the SRI.

For (A2
S/σ2

read)(A
2
R/σ2

read) > 0.37, the variance of the measured φSRI is less than 0.1 rad2.

Under closed-loop conditions AR, while not large, should at least be well above zero. AS

is much more the issue in that under highly scintillated conditions, AS will vary greatly
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Figure 48: Variance of φSRI determined through Equation (32)

and often be small. Measurements taken in these regions of low intensity will have higher

variance but be less critical than measurements of regions of high intensity because of their

lower energy content.

Having an idea of the quality of the measurements provided by the SRI WFS allows

us to design the Kalman filter estimating the system. Modeling the system and knowing

the variance of the WFS measurements allows us to set the Kalman gain of the system.

Ideally, the computation of the gain is as depicted by Equation (20) where the variance of

the system is dynamically tracked to make optimal use of measurements provided by the

sensor. In systems with recurring periodic measurements, however, several simplifications

can be made which greatly reduce computational requirements without significantly affecting

performance.

The first assumption which has already been discussed is that system dynamics can be

encapsulated into a single variable Qd. The second is that the system can be thought of as

in steady state. That is, that the variance of the system immediately after a measurement is

essentially the same as the variance of the system immediately after the previous measure-

ment. This is true of systems which are sampled at a higher rate than their system dynamics
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and should be true in AO systems sampled above 10 times the Greenwood frequency, which

most designers consider a minimum sampling rate. Finally, the state transition matrix is

one well-modeled as the identity matrix, which implies that phase does not decay towards

a mean between samples. Without prior knowledge, the modulo 2π nature of phase implies

that phase should be uniformly distributed between −π and π, so that phase will not decay

towards a particular value.

Beginning with the variance of the estimate just after the measurement is taken, the

following simplifications can be made:

P (t+i ) = P (t−i )−K(ti)H(ti)P (t−i ) (33)

P (t+i ) = [I −K(ti)H(ti)]P (t−i ) (34)

Continuing with the variance of the estimate immediately after the measurement is taken,

P (t−i ) = Φ(ti, ti−1)P (t+i−1)Φ
T (ti, ti−1) +

ti∫

ti−1

Φ(ti, τ)G(τ)Q(τ)G(τ)ΦT (ti, τ)dτ (35)

= Φ(ti, ti−1)P (t+i−1)Φ
T (ti, ti−1) + Qd(ti) (36)

= P (t+i−1) + Qd(ti) (37)

= [I −K(ti−1)H(ti−1)]P (t−i−1) + Qd(ti) (38)

Setting P (t−i ) equal to P (t−i−1) equal to P (t−), and recognizing that for a system with a

single state variable and a one-to-one mapping from measurements to states, H(ti) = 1 we

obtain

P (t−) = [I −K(ti−1)H(ti−1)]P (t−) + Qd(ti) (39)

=
Qd(ti)

K(ti−1)
. (40)

Examining the equations for the Kalman gain K,

K(ti) = P (t−i )HT (ti)[H(ti)P (t−i )HT (ti) + R(ti)]−1 (41)

= P (t−)[P (t−) + R(ti)]−1. (42)
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Since P and R will be scalars,

K(ti) =
P (t−)

P (t−) + R(ti)
(43)

=
Qd(ti)

K(ti−1)

Qd(ti)
K(ti−1) + R(ti)

(44)

=
Qd(ti)

Qd(ti) + R(ti)K(ti−1)
(45)

now, assuming that K(ti) does not change significantly from one measurement to the next,

K(ti) = K(ti−1), and

K(ti) =
Qd(ti)

Qd(ti) + R(ti)K(ti)
. (46)

Then

K(ti) [Qd(ti) + R(ti)K(ti)] = Qd(ti) (47)

R(ti)K(ti)2 + Qd(ti)K(ti)−Qd(ti) = 0 (48)

K(ti) =
−Qd(ti)±

√
Qd(ti)2 + 4R(ti)Qd(ti)

2R(ti)
(49)

and since K(ti) > 0, this becomes

K(ti) =
Qd(ti)
2R(ti)

(
√

1 + 4R(ti)/Qd(ti)− 1), (50)

and K as a function of R
Qd

is depicted in Figure 49.

Since R is a function of AR and AS , and Qd is constant unless the turbulence

characteristics change, the natural conclusion is that K(AR, AS) can be determined as

K(AR, AS) = Qd(ti)/[2R(ti)]{(1 + 4R(ti)/Qd(ti))1/2 − 1}. An example of such a relation-

ship is shown in Figure 50.

Implementation, however is not so simplistic. Determining the effects of AR and AS

on measurement accuracies is difficult and complicated by the fact that when AR and AS

become small, measurement errors appear to become less Gaussian. In addition, Qd may
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vary at small AS values because the complex value of light at that point may jump over

and around the origin, causing φ to vary more from frame to frame than normal.

A second factor is that areas of high intensity in an optical field have the greatest

impact on system performance because that is where the most energy resides. Varying

the Kalman gain K at low intensity areas where AS is small optimizes the system in the

low-energy, least-important parts of the field.

A final factor is that in an AO system with fast sampling, the criticality of K is low.

If the system is sampled at many times the Greenwood frequency fG, having the gain K

be slightly less than optimal does not affect system performance very much because Qd

is small. The system takes multiple measurements of what is effectively the same system

states.

The bottom line is that using a full-blown Kalman filter, or even using steady-state

assumptions and simply adjusting K based on an expected variance of the measurements,

would be an entire research topic in itself and is beyond the scope of this research. Fixed gain
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proportional integrators work extremely well for highly sampled systems with reasonable

SNRs, even in strong turbulence, and is used in this project.

3.4 Deriving wavefront amplitude from SRI output

As mentioned previously, the phase of a wavefront can be determined as the arctangent

of the ratio of interferogram differences.

φ = tan−1

(
I1 − I3

I2 − I4

)
(51)

Generally knowing the phase is sufficient, but knowing the amplitude would be potentially

advantageous, particularly in highly scintillated fields where the amplitude varies signifi-

cantly. Towards that end, it would be useful to be able to determine wavefront amplitude

from SRI interferogram measurements.
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Figure 51: Graphical depiction of SRI phase estimation

Isolated to a single point, as depicted in Figure 51, the interferograms of an SRI

describe a system as

I1 = (x + AR)2 + y2

I2 = x2 + (y + A2
R)

I3 = (x−AR)2 + y2

I4 = x2 + (y −AR)2,

where x is the real component of the field, y is the imaginary component of the field, and

AR the amplitude of the reference. Essentially, this is an over-determined system with

four equations and the three unknowns of x, y, and AR. Conversely, the unknowns can be

treated as AS and φ where x = AS cos(φ) and y = AS sin(φ). This is convenient because as

previously mentioned, φ is already solved by the arctangent function. Useful manipulations

of the aforementioned interferogram equations are

I2 − I4

I1 − I3
=

4y

4x

=
y

x
,
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which is used by the arctangent function to determine φ,

(I1 − I3)2 + (I2 − I4)2 = (4xAR)2 + (4yAR)2 (52)

= 16A2
R(x2 + y2) (53)

= 16A2
RA2

S (54)

and

I1 + I2 + I3 + I4 = 4(x2 + y2 + A2
R) (55)

= 4(A2
S + A2

R). (56)

Now, rearranging Equation (55), we write

−4(A2
S + A2

R) + I1 + I2 + I3 + I4 = 0.

Multiplying through by A2
R and dividing by −4 gives

A4
R + A2

RA2
S −

I1 + I2 + I3 + I4

4
A2

R = 0.

Rearranging again and using Equation (52) to substitute for A2
RA2

S leaves

A4
R −

I1 + I2 + I3 + I4

4
A2

R + A2
RA2

S = 0

A4
R −

I1 + I2 + I3 + I4

4
A2

R +
(I1 − I3)2 + (I2 − I4)2

16
= 0

which is a quadratic of A2
R and can be solved as

A2
R =

−B ±√B2 − 4AC

2A

where A = 1, B = −(I1+I2+I3+I4)/4, and C = [(I1−I3)2+(I2−I4)2]/16. This provides

two answers and it can in fact be shown that one answer is A2
R while the other answer is

A2
S . The dilemma then is deciding which is A2

S and which is A2
R.
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Figure 52: Normalized reference intensity

The first step to accomplish this is to take a calibration of the amplitude of the

reference field and normalize this field by the energy of the reference field. Figure 52 shows

the idealized Gaussian shape of the reference amplitude for the simulation used throughout

this project. The Gaussian shape is caused by the distribution of energy from a finite-sized

core of the fiber [44]. This is the shape that the reference field will take so that if the total

energy of the reference field is known, the intensity of the reference field at any point can

be determined.

With the normalized reference amplitudes in hand, the energy of the entire field is

determined as the sum over the entire field of A2
S and A2

R for a given frame. Conveniently,

this is simply the sum over the field of all four interferograms. A portion of this energy is

from the reference and a portion is from the signal. Starting from an estimate of having the

energy in the reference beam be a factor of the total energy received (say 5 percent to start

because the reference beam will be weak until the system locks on) the expected reference

amplitudes are generated. Then the energy of each subaperture is determined by summing

the interferogram values for that subaperture. If the energy of a subaperture is more than

a threshold of twice the energy of the estimate of the reference beam, the larger of the two
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values is assumed to be A2
S while the smaller is assumed to be A2

R.

I1 + I2 + I3 + I4

4
> 2A2

R (57)

A2
R + A2

S > 2AR (58)

AS > AR (59)

If the energy of a subaperture is less than twice the energy of the estimate of the

reference beam, the opposite is the case. Figure 53 is an example showing a total amplitude

side-by-side with a threshold of twice the reference amplitude. Total amplitudes above

the doubled reference amplitude surface have AS > AR while total amplitudes below the

doubled reference amplitude surface have AS < AR. For the depicted example in Figure 53,

subapertures with AS > AR are shown in Figure 54.

Having accomplished this for the entire field, the sum of the reference energy through-

out the field is summed and compared with the assumed reference energy. If they are equal

(or close) the solution is complete. If they are is different, the sum becomes the new ref-

erence energy level and a second iteration is accomplished. In simulation, using the factor

of total energy determined by the previous frame, the solution resolves to having the refer-
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ence energy equate to the estimated reference energy very quickly - usually in one or two

iterations and only occasionally three iterations.

Once with a good estimate of the reference energy, A2
R is determined from the ref-

erence energy and the normalized reference amplitudes. This is believed to be a better

estimate of A2
R than the solution for A2

R determined from the quadratic equation as it uti-

lizes information from the entire field instead of a single pixel, making it less prone to noise.

The final portion of the process is to determine A2
S from the signal. A2

S is determined as

the difference between the total energy of a subaperture and the estimated energy of the

reference for that subaperture. Total energy for a subaperture is the sum of the interfero-

gram intensities for that subaperture and the reference energy is the previously discussed

estimate of the reference energy.

The end result is an estimate of the signal intensity A2
S . This is particularly useful in

that knowing the intensity of the signal allows the placement of branch cuts into areas of

lower intensity.
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3.5 Kalman Filter

A Kalman filter accomplishes two goals. The first is that, within the constraints of

the fidelity of the system model, a Kalman acts as an optimal estimator of the system after

a measurement has been provided to the filter. The second is that of a predictor of the

system between measurements (again, optimally within the constraints of the fidelity of the

system model).

While for an AO system sampled at many times the Greenwood frequency, the esti-

mation of the system is generally the more important role, the prediction capabilities of the

filter can be important in circumstances such as tracking low-earth satellites where Green-

wood frequencies encountered by the system are particularly high due to the speed of the

targets across the sky [43].

Restricting ourselves to systems sampled at many times the Greenwood frequency, the

implication is that the states of the system are largely unchanged in-between measurements

so that the state transition matrix approaches the identity matrix.

3.5.1 Linear Kalman Filter or Extended Kalman Filter. The linearity of system

and measurement is a key element in determining whether a linear Kalman filter (LKF)

can be utilized in estimating the system or whether the more complicated extended Kalman

filter (EKF) must be used.

In the case of a spatially phase-shifted SRI, while the arctangent function which con-

verts interferograms to phases is non-linear, the result of the conversion has been shown

to have zero-mean Gaussian properties usable by an LKF. Essentially the spatially phase

shifted SRI can be treated as a noisy sensor of φ.

For a temporally phase-shifted SRI, however, only one of the four necessary interfer-

ograms is produced per sample period. The single interferogram can be used to update an

existing state estimate, but the process is non-linear and requires the use of an EKF [41].

The alternative is to save the previous interferograms and treat them as though they all

occurred simultaneously (accepting the associated errors with that assumption) even though

they did not. Utilizing an EKF has been shown to be advantageous in this circumstance as

sample rates lower [41].
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3.6 Chapter Conclusions

AO control systems utilizing a fixed-gain proportional integrators already achieve most

of the performance benefits of Kalman filter estimation because of their similarity with linear

Kalman filters. While augmenting the state variables, varying the proportional integrator

gains or even tracking state estimation variances has potential for increasing performance,

there is little indication that such improvements would be significant compared to the diffi-

culty in implementing them. The system dynamics and SRI measurement studies necessary

to implement any such improvements (other than simply noting the potential for such stud-

ies) is beyond the scope of this research and will not be accomplished here.

It is the author’s opinion that the computational burden associated with increased

system complexities threatens to slow the system down, preventing the performance gains

that a more complex system would hope to achieve. In AO (like airplanes) ‘speed is good,

more is better’ and the goal should be to design a system simple enough to work fast

while still working well. The conclusion from this chapter is that a standard fixed gain

proportional integrator should be used in implementing AO estimation and correction.
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IV. When to Unwrap

4.1 Introduction

As discussed in Chapter II, it is important to provide an unwrapped phase to the DM

in attempting to correct for atmospheric turbulence. Where in the design to unwrap

is an important question to answer when designing an AO system.

4.2 Weak Versus Strong Turbulence AO Systems

4.2.1 Weak-turbulence AO systems. A typical AO system designed to operate in

the weak turbulence regime utilizes a Shack-Hartman WFS and a LS reconstructor feeding

a proportional integrator as shown in Figure 55.

In such a system, the S-H WFS senses phase gradients 4φx and 4φy which are

restricted only by the physical design of the sensor in range. The S-H WFS works well in

weak turbulence conditions because of its simplicity and the fact that there are no significant

intensity nulls where the lack of field intensity would cause regions where the WFS gradients

had large error variances. The LS reconstructor then generates phases from the phase

gradients provided by the S-H WFS. The LS reconstructor generates an unwrapped estimate

of the phase of the irrotational portion of the field being seen by the S-H WFS. Since, under

weak turbulence assumptions, the field is irrotational, this is a good estimate of the phase

of the entire field. The net result is an AO system with a WFS which performs well under

weak turbulence conditions using a reconstructor which performs well under weak turbulence

conditions.

The phase at this point is the sampled estimate (unwrapped) of the phase of the

optical field being seen by the DM (after being corrected by the DM). As such, it is an

estimate of the error (or differential) between the phase of the optical field and the phase

applied to the DM to correct the optical field. The PI controller integrates a portion of this

differential in order to develop the phase φDM (ti) which should be applied to the DM for

the next correction given by

φDM (ti) = BLS
(

∂φ(ti)
dx

,
∂φ(ti)

dy

)
+ AφDM (ti−1) (60)

= BU(φ̂WFS(ti)) + AφDM (ti−1) (61)
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where A and B are the PI gains. LS() is the least-squares operator, ∂φ(ti)
dx and ∂φ(ti)

dy are

the x and y phase gradients of the field as measured by the S-H WFS. φDM (ti) is the phase

to be sent to the DM and φDM (ti−1) is the phase that was sent to the DM on the system’s

previous iteration. U() is the unwrapping operator and φ̂WFS is the sampled estimate of

φWFS , the phase seen by the WFS.

Once in strong turbulence, however, the situation changes. As previously discussed

in Chapter II, S-H WFSs perform poorly in significant scintillation, and LS reconstructors

ignore the rotational component of the phase field present in strong turbulence.

4.2.2 Strong-turbulence AO system. As an interferometric-based WFS, the SRI is

an excellent choice for systems encountering strong turbulence. However, the phase output

of an SRI is fundamentally limited in range to (−π, π]. This restriction is a mathematical

artifact of the four-quadrant arctangent function which has a range of (−π, π]. Thus, while

an SRI handles scintillation extremely well, includes the rotational phase contributions from

branch point effects, and does not need to be reconstructed into phase like the output from

a S-H WFS, it still needs to be unwrapped. Unwrapping an optical field is a challenging

problem in strong turbulence which is addressed in Chapter V.

Once the output of an SRI is unwrapped, the inclination is to treat the remainder

of the system like a conventional design, using Equation (61) and applying the result to

the DM in order to correct the wavefront. The problem in utilizing Equation (61) under
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strong turbulence conditions is that, unlike the weak turbulence case, being unwrapped

does not imply that φ̂WFS is a sampled estimate of a continuous phase. While being

unwrapped implies that wrapping cuts are eliminated, branch cuts connecting the branch

points encountered in strong turbulence will still exist. Equation (61) causes these cuts to

affect φDM , effectively corrupting φDM .

4.2.3 Uncharted islands. In practice, it has been seen that the iterative integration

of the discontinuous U(φDM ) builds up to the point where not only branch cuts exist in

φDM , but wrapping cuts where lines of greater than π difference between adjacent actuator

commands extend either from one edge of the aperture to another or islands of unnecessary

phase where the cut line extends back to itself as shown in Figure 56. The effect of having

wrapped phases on the DM is to have lines of unnecessary 2π phase transitions in the

field. These transitions are fundamentally unnecessary and degrade performance because

continuous facesheet DMs cannot accurately follow discontinuous phase transitions.

4.2.4 Island persistence. While the wrapping of φDM is an artifact of the discon-

tinuous nature of φWFS , the persistence of wrapping cuts in φDM is a result of the modulo

2π nature of SRI phases. DM actuators and WFS subapertures are matched one-to-one

and overlaid on top of each other so that 2π jumps between adjacent subapertures are un-

sensed and cannot be eliminated. The effect of having wrapping cuts being created and not

eliminated is to have the number of wrapping cuts build up over time.

As an example, a simulation was performed where strong turbulence was applied to

an AO systems which applied the unwrapper before the PI controller. Log variance was 0.5,

r0/DSA = 4, and the sampling rate fS = 233fG. The performance results for a series of 512

frames are in Figure 57 and show the degradation of the performance for the ‘unwrap then

control’ system.

Video of the residual phase clearly shows the buildup of unnecessary phase cuts on

the system. While not as demonstrative as the video, snapshots of the residual phase of

the ‘Unwrap the control’ AO system at frames 1, 101, 201, 301, 401, and 501 are shown in

Figure 58. The first frame is effectively the uncorrected turbulence because the loop has not
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Figure 56: Example residual phase showing 2π islands. Lines of blue/red indicate where
the DM is making 2π transitions. Note the isolated circle just slightly above center. The
circular shape and the double transition (blue-red-green-blue-red-green) indicate that a
single DM actuator is displaced 4π from what it should be.

closed. Subsequent snapshots show the progression of wrapping cuts from less significant to

more severe.

4.2.5 Dealing with the problem.

4.2.5.1 Oversampling. The first of several solutions is to oversample the

field. That is, having 22 or more SRI subapertures for each DM actuator. This allows

the SRI to have additional observability on DM induced phase cuts as the 2π differential

is spread over several subapertures. This makes it much more likely that the 2π islands

can be detected and eliminated. Oversampling the field has been shown to work [36], and
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should work particularly well when the oversampling is higher, say with 42 or 82 WFS

subapertures per DM actuator. Oversampling reduces the SNR of the WFS, however, and

the computational burden associated with doubling (or more) the number of subapertures

in the WFS may be a problem and promises to be even more significant as designers create

DMs with increasing numbers of actuators, causing the number of WFS subapertures to

grow proportionally.

4.2.5.2 Applying a leaky integrator. A second method of avoiding the prob-

lem is by putting a ‘leak’ in the proportional integrator which reduces the error in small

increments over time. This makes it much more likely that the 2π islands degrade and

disappear in the same manner as they appear. Simulations were performed under similar

conditions to Figure 58 for PI gain values of ‘A’ set to 1.0 (no leak), 0.99 (leak = 0.01),

0.98, 0.95 and 0.9. The residual at frame 501 for each value of A is depicted in Figure 59.

Qualitatively speaking it is apparent that the number of unwrapping cuts is decreasing as

the leak value increases. The problem is that increasing the leak, while decreasing wrapping

cuts, significantly degrades performance of the system in non-wrapping cut areas. This is
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apparent by the orange and red areas of the residual in the snapshots of AO systems with

higher leak levels. From a more quantitative viewpoint, Figure 60 compares the Strehl ratio

performance for the five leak values. From this figure, reducing A to incorporate a ‘leak’

does not help. While reducing A may help alleviate the buildup of 2π islands, the negative

effect of the ‘leak’ on performance is significant.

To further investigate this phenomenon, a limited study was performed at the Starfire

Optical Range (SOR). The ASALT laboratory at SOR is set up with an AO system whose

block diagram is shown in Figure 61. This system is designed to allow users to incorporate

different control structures into an AO system with minimal setup and adjustment of the

optical bench. Turbulence r0 and log-variance can be set by positioning phase wheels and the

lens sets used with them. The speed that the phase wheels are turned sets the Greenwood

frequency of the turbulence and the wheels are reset to a specified initial position so that

subsequent runs encounter repeatable conditions. Different types of WFSs are set up in

parallel, so that users can choose the WFS they desire without having to rebuild the optical

bench. The user can apply MATLAB functions through the use of a Graphical User Interface

(GUI) to control outputs to send to the DM based on WFS inputs. For the study, AO control

structures were set up identical to the computer simulation. Figure 62 shows a screen shot

of the ASALT lab GUI depicting the control setup.

While quantitative data were also recorded, the best indications of the problems of

phase cuts building up in a ‘unwrap then control design’ were the qualitative data taken in

the form of videos taken showing the interferograms of the surface of the DM.

The video highlighted the problem and the effects of leak values on the buildup of

extraneous DM phase cuts on the AO system. Figure 63 shows the interferogram when the

DM is flat. Screen Figures 64 through 68 show the interferogram of the DM surface after

approximately 100 frames for A = 1.0, 0.998, 0.99, 0.95, and 0.9 respectively.

4.2.5.3 A better solution. The previous solutions treat the symptoms of the

problem rather than the problem itself in that they attempt to facilitate the elimination of

unnecessary phase cuts on the DM after they have developed, rather than preventing the

build-up of unnecessary branch points in the first place.
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In order to prevent the initial buildup of extraneous branches, a better solution is to

place the unwrapper after the PI controller instead of before. The unwrapper can prevent

unnecessary phase cuts and keep performance from degrading. It should be noted that

the actuator-to-actuator phase differential must be less than π (excluding whatever phase

gradient is being corrected by the system’s steering mirror.) Actuator-to-actuator phase

differentials of greater than π would be modulus restricted to [−π, π). This deviates from

designs used for weak turbulence conditions and is referred to throughout this research as

a ‘control then unwrap’ design. This has been developed in simulation as shown in Figure

69. The key element here is that the proportional integrator develops a wrapped output.

Unwrapping the field as the last step before applying the solution to the DM assures that

the phases being applied to the DM are unwrapped. As shown in Figure 70, the Strehl ratio

performance of such a system is more jagged or noisy than an ‘unwrap then control’ design,

but does not degrade over time as a ‘unwrap then control’ system will. The performance

is an artifact of the unwrapping solutions jumping around somewhat. While this noise is

highlighted in simulation it would likely be less noticeable in actual implementation since

the DM cannot change instantly as the simulation does.

4.3 Chapter conclusions

The differences between AO under weak or strong turbulence conditions are high-

lighted by the need to unwrap the field at the appropriate point in the control design.

Designs unwrapping phase before applying the PI control law allow unnecessary phase cuts

to build up on the DM progressively degrading performance. This problem has been demon-

strated in both simulation and laboratory experimentation.

Solutions to the problem of the buildup of extraneous phase cuts include oversampling

the field or including a leak factor to help tear down the extraneous phases. Both solutions

have problems. Oversampling increases computational complexity, potentially degrading

performance if sampling rates are reduced. Applying the PI control law using the wrapped

phase estimates from the WFS and then using an unwrapper to unwrap the resulting output

prevents the buildup of extraneous phase cuts. This will work under both under weak and

strong atmospheric turbulence conditions. The conclusion from this chapter is to use a
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‘control then unwrap’ control architecture in designing an AO system for operation under

strong turbulence conditions.
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Figure 58: Buildup of phase cuts in ‘unwrap then control’ AO
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Figure 59: Residuals after 500 frames for varying levels of A
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Figure 60: Comparison of various leak levels on system performance
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Figure 61: Block diagram of ASALT lab setup
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Figure 62: Screen shot of ASALT lab graphical user interface
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Figure 63: Interferogram showing flat DM (open-loop)

Figure 64: Interferogram of DM after 100 frames in AO system with A = 1.0
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Figure 65: Interferogram of DM after 100 frames in AO system with A = 0.998

Figure 66: Interferogram of DM after 100 frames in AO system with A = 0.99
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Figure 67: Interferogram of DM after 100 frames in AO system with A = 0.95

Figure 68: Interferogram of DM after 100 frames in AO system with A = 0.9
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Figure 69: Block diagram of a SRI based ‘Control then Unwrap’ AO system

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Noise = 1000 (low), sample frequency = 233 f
G

frame

S
tr

eh
l R

at
io

Figure 70: Performance of ‘Control then unwrap’ design
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V. Optical phase unwrapping in the presence of branch points

5.1 Introduction

Unwrapping an optical field in the presence of branch points is a significant chal-

lenge when designing an AO system to operate in strong turbulence. Under weak

turbulence, AO systems utilizing Shack-Hartmann WFSs and least-square reconstructors

are unwrapped as part of the reconstruction process. The result is a smooth phase, im-

plementable by a DM. With strong turbulence, branch points require branch cuts which

complicate phase unwrapping. These unavoidable 2π lines of discontinuity degrade AO sys-

tem performance when correcting with a continuous surface deformable mirror due to the

inability of the mirror to fit the required discontinuous phase [16]. Branch cut placement,

however, affects the amount of degradation and branch cuts can be placed between branch

points in many different ways. As previous published by the author [42], this chapter pro-

poses a non-optimal but effective and implementable phase unwrapping method for optical

fields containing branch points which places branch cuts where their negative impact on

system performance is minimized.

5.1.1 Phase Cuts. Phase cuts, degrade system performance because the DM can-

not change shape abruptly and instead changes smoothly between actuators in attempting

to match a phase cut. Regions between samples on either side of a cut are poorly corrected

by the DM because the DM cannot emulate a cut precisely and will ramp from the com-

manded level on one side of the cut to the level on the opposite side of the cut. As such, it

is advantageous to eliminate phase cuts wherever possible and keep them short and through

areas of low illumination when they cannot be eliminated.

For the purposes of this research, a phase cut will be considered as anywhere there is

a difference of more than π between adjacent pixels. Throughout this chapter, phase cuts

are depicted in figures by lines. ‘x’s and ‘o’s in figures indicate the location of positive and

negative branch points, respectively. The line colors are usually white but may vary from

figure to figure in an effort to keep them distinct from the background.

5.1.2 Wrapping Cuts. Phase cuts take two forms, wrapping cuts and branch

cuts. A wrapping cut is only due to the field being wrapped and proceeds from one edge
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Figure 71: (a) Wrapped phase with only wrapping cuts. (b) Unwrapped version of (a).
Note that the unwrapped phase is smooth.

of the optical field to another. It can be eliminated by adding or subtracting an integer

multiple of 2π to the field on one side of the wrapping cut. Cuts which form a closed path

within the field are also unwrapping cuts and can be eliminated similarly by either adding

or subtracting an integer multiple of 2π to the interior or exterior of the cut path. As an

example, Figure 71 depicts a wrapped and unwrapped phase. Note that the wrapped phase

is limited in range to [−π, π) while the unwrapped phase is not.

5.1.3 Branch Cuts. Figure 72 shows a phase with both wrapping and branch cuts.

Unlike wrapping cuts, branch cuts do not extend across the entire field (or in a closed path)

having at least one end terminating at a branch point [17]. They either connect branch

points of opposite polarity or connect a branch point with the edge of the optical field (in

effect placing a branch point of opposite sign just off the field at that point). By terminating

at a branch point, they compensate for the non-zero curl of phase differential around the

branch point. In a closed path around a single branch point, the phase differentials integrate

to ±2π. As the line integral crosses the branch cut, however, ∓2π is added so that the closed

line integral sums to zero as it would if there were not a branch point within the closed

path. Branch cuts can be placed in a variety of ways, all of which will still compensate for

the non-zero curl of branch points in the phase. Two examples of phase cut placement are

shown in Figure 73. The poor unwrap is created by simply unwrapping the field from left
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Figure 72: Wrapped phase with both wrapping and branch cuts. If this phase were to be
unwrapped, it would not be smooth.

to right. The minimum cut distance unwrap was manually created to minimize the length

of the branch cuts.

5.1.4 Least-Squares Unwrappers. Least-squares (LS) unwrappers are very common

methods of estimating the unwrapped phase of an optical field in AO systems designed for

weak atmospheric turbulence [18]. There are two types, weighted and unweighted.

5.1.4.1 Unweighted LS Unwrappers. For an N × N array of phases, an

unweighted LS unwrapper is developed as

Gφ = s

GTGφ = GTs

(GTG)−1GTGφ = (GTG)−1GTs

φLS = (GTG)−1GTs,
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Figure 73: Poor unwrap and minimum cut distance unwrap of phase field with branch
points.

where G is a 2N(N − 1)×N2 transformation matrix that converts the N2 vector of phases

φ into a 2N(N − 1) vector of phase differentials in the x and y directions s and the inverse

notation is taken to be the pseudo-inverse. In weak turbulence, s is most commonly the

phase gradients provided by a Shack-Hartmann WFS. If actual phases φTot are available,

the phase differentials s are developed as s = W(GφTot) where W() indicates the wrapping

operation of limiting the differentials s to some 2π interval. An important point is that

while creating an N2 × N2 pseudo inverse is computationally daunting, the problem is

alleviated somewhat by G being sparse and fixed for a given AO system. Much of the work

can be pre-computed a single time rather than having to be determined in real time during

execution.

5.1.4.2 Weighted LS Unwrappers. Weighted LS unwrappers are sometimes

used to minimize noise or emphasize certain parts of a field. In a weighted LS unwrapper,
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the slopes are weighted before applying the pseudo-inverse as

Gφ = s

WGφ = Ws

(WG)TWGφ = (WG)TWs

GTWTWgφ = GTWTWs

GTW2Gφ = GTW2s

(GTW2G)−1GTW2Gφ = (GTW2G)−1GTW2s

φLS = (GTW2G)−1GW2s,

where W is an 2N(N − 1) × 2N(N − 1) diagonal array of weights. It works essentially

the same as an unweighted LS unwrapper, but the pseudo inverse cannot be pre-computed

because the weighting matrix is not typically constant. This makes a weighted LS unwrapper

difficult to implement in real-time systems.

5.1.4.3 LS Unwrappers and the hidden phase. In estimating the phases

from the slopes, there is an implicit assumption that the sum of phase differentials is path

independent, or that the field is irrotational. As a result, the phase estimate of an LS

unwrapper is irrotational. The LS unwrapper does not reconstruct the rotational portion

of the phase, which is why the rotational component of the phase is sometimes referred to

as the “hidden phase” [15]. This makes a simple LS unwrapper alone a non-optimal choice

when compensating for strong turbulence [32,39].

5.1.5 Non-LS Component of the Field. The non-LS component of the field is

the difference between the original field and the output of a LS unwrapper. If the original

field is irrotational, the output of the LS unwrapper will be modulo-2π-equivalent to the

original field, and the non-LS component will be non-existent. If the original field has branch

points and is rotational, the effects of those branch points will be isolated in the non-LS

component. As such it is sometimes referred to as the rotational component [18]. Strictly

speaking, the rotational component containing the non-zero curl effects of the field is not

unique [9], so it is referred to here as the non-LS component, uniquely identifying it as the
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Figure 74: Intensity overlaid by branch cuts using LS unwrapper to eliminate wrapping
cuts.

difference between the original field and the output of a LS unwrapper. For the purposes of

this research, the non-LS component will be wrapped to a particular 2π range.

5.2 Improved Unwrapper

The first step in unwrapping efficiently in the presence of branch points is generating

the LS and non-LS components of the field through the use of an LS unwrapper,

φLS = LS(φTot)

and

φnon−LS = W
(
φTot − LS(φTot)

)

where LS() indicates applying an LS unwrapper operation to the vector of wrapped phases

φTot and W() indicates wrapping the phase to some 2π range.

Wrapping cuts are eliminated by the LS unwrapper, and branch cuts are isolated in

φnon−LS . Thus total phase φTot adjusted to remove wrapping cuts while still retaining
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Figure 75: Poor unwrapping, phase and intensity overlaid by branch cuts.

branch cuts can be determined as

U(φTot) = φLS + φnon−LS , (62)

where U() indicates an unwrapping process which removes wrapping cuts (but not branch

cuts). While removing any wrapping cuts, this unwrapped result is modulo-2π-equivalent

to φTot, maintaining both the irrotational and rotational components of the field. This has

been covered in several texts [18] and is a common way of including rotational phase effects

in the AO systems being developed to operate under strong turbulence conditions [4].

In general, this approach is reasonably effective as shown in Figure 74. Here the field

whose phases are in Figure 72 has its wrapping cuts removed by the process depicted in

Equation (62). The resultant branch cuts are plotted over the intensity (instead of the phase

as in previous figures) to show the effectiveness of the unwrap. In this case the branch cuts

are reasonably short and seem to avoid the areas of high intensity, although they may not

be optimal.

While generally effective, this unwrap method sometimes gives less appealing results

as shown in Figure 75. Here the branch cuts are much longer than they could be and go

through areas of high intensity. Admittedly this is the worst realization encountered in the

simulation, but poor results are encountered.
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Since after unwrapping the LS portion of the phase field φLS is free of phase cuts,

the non-LS portion φNon−LS must be examined in order to reduce the impact of phase

cuts. Being wrapped, φNon−LS is restricted to some 2π range, say [0, 2π). If the range is

changed to [−π/2, 3π/2) then all the points whose phase is in [3π/2, 2π) would have 2π

subtracted from them. The resulting field would be modulo-2π equivalent to the original

field, but would have branch cuts in different positions. The field depicted in Figure 75 is

re-depicted in Figure 76 alongside unwraps for the same field with φNon−LS having differing

range restrictions. The unwrap with φNon−LS restricted to [0, 2π) has terrible branch cut

placement. The remaining three realizations depicted are much more reasonable, with the

realization created by limiting φNon−LS to [−π, π) having the lowest normalized cut length.

It should be noted that the creation of four realizations is reasonable because the majority

of the computational load is in executing the LS unwrapper which only has to be done once.

5.2.1 Unwrapping Metric - Normalized Cut Length. Having developed multiple

modulo-2π-equivalent phase realizations, it is necessary to compare different branch cut

placements so that the best one can be chosen. Short cuts through regions of minimal

illumination have the least impact on system performance [17]. As such, the metric used

in this work is ‘normalized cut length’ which is the line integral of field intensity along

any phase cuts divided by the average intensity of the field. It is an indication of what

proportion of light in the system is along phase cuts. Since light along branch cuts is

erroneously corrected by a continuous facesheet DM, it should be minimized and a shorter

normalized cut length is desired.

For a discretely sampled field, normalized cut length is determined by first isolating

the phase cuts within the field. This can be accomplished by taking the difference between

adjacent pixels first up and down and then side to side. The intensities on either side of the

cuts are then summed and divided by two to account for the average intensity along the

cuts. Finally, the result is normalized by dividing by the sum of the field’s intensities.

The advantage of normalized cut length is that it can be computed during system

execution and is highly correlated to system performance. In order to show the correlation

of normalized cut length to system performance, a 256×256 complex ‘Fine’ field is developed
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φNon−LS ⊂  [−π/2,3π/2), norm cut length = 6.7
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(c)

φNon−LS ⊂  [−π,π), norm cut length = 0.7
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(d)

φNon−LS ⊂  [−3π/2,π/2), norm cut length = 1.0
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Figure 76: Branch cuts of four different unwrap realizations.

from the 32 × 32 field by interpolation from the coarser field. Similarly a 32× 32 array of

phases from an unwrapper is converted into a 256× 256 arrays of phases. This models an

idealized DM whose surface varies smoothly between actuators. The DM model is translated

into the complex domain by û + iv̂ = Â exp(iφ̂) where û and v̂ are the real and imaginary

estimates of the field, Â is the estimated amplitude of the field and φ̂ is the estimated phase

of the field. The field-estimation Strehl ratio can then be computed as

S =
|

N∑
a1=1

N∑
b1=1

Fa1b1E
∗
a1b1

|2

N∑
a2=1

N∑
b2=1

Fa2b2F
∗
a2b2

N∑
a3=1

N∑
b3=1

Ea3b3E
∗
a3b3

, (63)

where F is the ‘Fine’ field, E is the estimated DM field and ∗ is the conjugation operator [35].
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Figure 77: Field estimation Strehl ratio versus integrated cut intensity.

By developing both the ‘Fine’ field and estimated DM field by interpolating from the

same coarser field, degradations in the field estimation Strehl are isolated solely to the effect

of phase cuts in the field. This allows direct comparison between normalized cut length and

the effect of phase cuts on field estimation Strehl.

Normalized cut length is plotted against field estimation Strehl ratio for the various

fields and unwrapping methods examined during this work in Figure 77 and has a correlation

of −0.9982. Normalized cut length is shown to be a good measure of the impact of phase

cuts on field estimation Strehl ratio, and thus on system performance.

5.3 Simulation and Results

In order to test the unwrapper, a simulation was created that isolates and unwraps

32 × 32 sections from a 513 × 513 optical simulation generated test screen. The section

size is arbitrary and alternative sizes could be studied. The simulation was run on two test

screens depicting fields with intensity log-amplitude variances of 0.4 and 0.8. Each had a
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scaling of 16 pixels per the atmospheric coherence diameter r0. The log-amplitude variance

of intensity is a measure of the scintillation of the field and a reasonable indication of the

turbulence strength [1]. Both variances reflect strong turbulence which would create branch

points.

For a given field, the 32 × 32 window is moved throughout the larger test screen to

look at all possible realizations of the test screen. While correlated, this gives a wide variety

(482 × 482 = 232, 324) of different realizations. Some are benign and all four unwrapped

versions have effectively placed branch cuts. Others, as shown in Figure 75 have an un-

wrapped version where a cut passes through or close to a region of high intensity. This is

certainly an unwrapping solution to avoid and justifies creating an unwrapper which can

choose the best of four unwrap realizations.

For each of the 232,324 possible realizations, the integrated cut intensity metric is

recorded for the four φnon−LS ranges. The average and maximum score for all realizations

is then determined for each of the four ranges. These data show how the unwrapper would

perform if the range was fixed to a particular range. The integrated cut intensity is also

recorded for the φnon−LS range which gives the lowest score. The average and maximum

is determined for this best of four φnon−LS ranges and compared against the average and

maximum scores from the fixed ranges.

The results of the unwrapper using both unweighted and weighted (by field intensity)

LS unwrappers to separate out the rotational component are given in Tables 1 and 2 for log-

variance values of 0.4 and 0.8 respectively. Compared to limiting the non-LS component to

a single range, the variable-range ‘φLS +φnon−LS ’ mean normalized cut length is reduced in

both cases. Perhaps more importantly, the worst realizations are avoided in a variable-range

‘φLS + φnon−LS ’ unwrapper so that the maximum normalized cut length is dramatically re-

duced. The weighted variable-range ‘φLS +φnon−LS ’ unwrapper has the effect of influencing

the LS portion of the field towards the areas of higher intensity. The non-LS portion of the

field is then influenced towards the areas of lower intensity and branch cuts are forced into

darker portions of the field. While a weighted LS unwrapper has the best performance, the

computational cost of a weighted unwrapper is significant (see Section 5.4).
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Table 1: Normalized cut lengths for 0.4 log-amplitude variance field
Non-LS component range Avg norm cut length Max norm cut length

Unweighted [0, 2π) 7.14 196.9
Results [−π/2, 3π/2) 6.65 159.2

[−π, π) 6.73 140.0
[−3π/2, π/2) 7.00 173.0

best of four realizations 1.13 37.6
Weighted [0, 2π) 1.41 88.6
Results [−π/2, 3π/2) 1.35 90.9

[−π, π) 1.40 93.3
[−3π/2, π/2) 1.44 85.7

best of four realizations 0.62 16.9

Table 2: Normalized cut lengths for 0.8 log-amplitude variance field
Non-LS component range Avg norm cut length Max norm cut length

Unweighted [0, 2π) 11.58 150.6
Results [−π/2, 3π/2) 11.57 161.4

[−π, π) 11.42 136.5
[−3π/2, π/2) 11.51 169.6

best of four realizations 3.0 43.8
Weighted [0, 2π) 3.10 94.3
Results [−π/2, 3π/2) 3.05 108.7

[−π, π) 2.95 103.7
[−3π/2, π/2) 2.98 110.6

best of four realizations 1.43 17.4
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5.4 Comparison to Other Unwrappers

In order to evaluate the worth of the variable-range ‘φLS + φnon−LS ’ method, it was

compared to other unwrappers designed to work with branch points. The other unwrappers

are the fixed-range ‘φLS + φnon−LS ’ unwrap, Goldstein’s branch cut placement unwrap

method [18], Waveprop’s xphase [7], and Fried’s smoothphase [16].

The fixed-range ‘φLS + φnon−LS ’ unwrapper is the same as the variable-range ‘φLS +

φnon−LS ’ but only develops a single unwrap realization instead of choosing the best of four

realizations. Goldstein’s branch cut placement method attempts to determine minimum

length branch cuts that connect branch points [18]. Xphase is a MATLAB unwrapping

function from the AOTools MATLAB toolbox. It is designed to work with fields containing

branch points and attempt to place branch cuts in low intensity regions of the field [7]. It

should be noted that ‘xphase’ required the 32 × 32 field to be zero-padded to 64 × 64 in

order to work properly because otherwise the field is considered to be periodic [6]. Fried’s

smoothphase unwrapper separates the field into rotational and irrotational components by

first determining the rotational component (after balancing the number of branch points by

adding additional branch points along the edge of the field as necessary). Once separated,

the irrotational component can be unwrapped and then recombined with the rotational

component of the field [16].

The comparison between unwrapping methods is given in Tables 3 and 4 for log-

amplitude variances of 0.4 and 0.8, respectively. Execution time is the time needed to

execute an unwrapper in MATLAB on a Pentium 4 CPU (3.2GHz) with 2.0 GB of RAM

over the 230,000+ frames tested. While execution times may depend on MATLAB im-

plementation, indications from this simulation are that the variable-range ‘φLS + φnon−LS ’

unwrapper using an unweighted LS gives the best performance at a reasonable computation

burden. The variable-range ‘φLS + φnon−LS ’ unwrapper using a weighted LS improves per-

formance still more, but at an unreasonable computational burden. The AOTools ‘xphase’

unwrapper gave slightly improved results compared to a variable-range ‘φLS + φnon−LS ’

using an unweighted LS unwrapper, but at over six times the computational burden.
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Table 3: Normalized cut lengths from various unwrappers, 0.4 log-amplitude variance
field

Unwrapping Method Avg norm cut lngth Max norm cut lngth Execution time
Unwtd φLS+fxd-rng φnon−LS 7.14 196.9 10 min
Unwtd φLS+var-rng φnon−LS 1.13 37.6 16 min
Wtd φLS+fxd-rng φnon−LS 1.41 88.6 23.6 hrs
Wtd φLS+var-rng φnon−LS 0.62 16.9 23.7 hrs

Goldstein 1.48 71.9 7.5 hrs
AOTools xphase 0.85 37.6 107.8 min

Fried Smoothphase 4.11 175.5 13 min

Table 4: Normalized cut lengths from various unwrappers, 0.8 log-amplitude variance
field

Unwrapping Method Avg norm cut lngth Max norm cut lngth Execution time
Unwtd φLS+fxd-rng φnon−LS 11.58 150.6 10 min
Unwtd φLS+var-rng φnon−LS 2.98 43.8 16 min
Wtd φLS+fxd-rng φnon−LS 3.1 94.3 23.6 hrs
Wtd φLS+var-rng φnon−LS 1.43 17.4 23.7 hrs

Goldstein 3.27 84.7 7.6 hrs
AOTools xphase 1.83 38.0 110 min

Fried Smoothphase 9.33 182.7 19 min

5.5 Impact on System Performance

The purpose of developing an improved unwrapper is to improve the performance of a

closed-loop AO system encountering strong turbulence. As such, a 1000 frame closed-loop

AO simulation was performed under 0.5 log-amplitude variance strong turbulence in order

to compare the effect of the unwrapping on system performance.

With the exception of the log-amplitude variance, simulation conditions were pur-

posely benign in order to isolate the unwrapping as the dominate factor on system perfor-

mance. The remaining simulation conditions were r0 = 4DSA where DSA is the diameter

of a sub-aperture, sample rate = 223 fG where fG is the Greenwood frequency of the at-

mosphere, and average SNR ' 200. The simulation used a leak-free integrator controlled

feedback with a error signal gain of 0.4. The control law was applied immediately before the

unwrapper, whose output then went to the DM which is the design advocated in Chapter

IV.

System performance using fixed φnon−LS range ‘φLS +φnon−LS ’ unwrappers was com-

pared against using a variable φnon−LS range ‘φLS + φnon−LS ’ unwrapper. Strehl ratio
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Table 5: Average Strehl results for 1000 frame simulation
‘Best of four’ ‘Best of four’

φnon−LS range mean Strehl ratio avg improvement max improvement
[0, 2π) 0.5956 7.6% 29.8%

[−π/2, 3π/2) 0.6104 5.0% 41.6%
[−π, π) 0.6198 3.4% 23.0%

[−3π/2, π/2) 0.6024 6.3% 33.4%
best of four 0.6406 N/A N/A

performance of the various simulations are plotted in Figures 78 and shows how different

fixed ranges have different periods of reduced performance. Average results are tabulated in

Table 5 as well as average and maximum improvements when using a ‘best of four’ unwrap-

per. The new unwrapper improved the average Strehl ratio performance between 3.3% and

7.6% against the four fixed φnon−LS range unwrappers with considerably less variability.

The maximum improvement of the new unwrapper against the four fixed φnon−LS range

unwrappers was more dramatic, ranging from 23.0% to 41.6%.

As the performance of a fixed-range ‘φLS + φnon−LS ’ unwrapper is inconsistent, the

average improvement of the variable-range ‘φLS + φnon−LS ’ unwrapper over a fixed-range

‘φLS + φnon−LS ’ unwrapper is difficult to determine. In order to develop an average im-

provement, the simulations were extended to 10,000 frames to provide each fixed-range of

the ‘φLS +φnon−LS ’ unwrappers with areas of both good and bad performance. The results

of the simulation were put into histograms and then summed to form cumulative distribu-

tion functions (CDFs) shown in Figure 79. The CDFs show how the variable range φnon−LS

unwrapper improves performance. The CDF of the variable range φnon−LS unwrapper is

shifted to the right when compared to the CDF of the fixed range φnon−LS unwrapper.

Not only does this indicate improved average performance, but indicates more significant

improvement for systems such as laser communication where performance thresholds which

inhibit operation below a certain Strehl ratio.

5.6 Chapter Conclusion

In the presence of branch points, unwrapping the phase is a difficult problem. Isolating

the rotational component by using a LS unwrapper to separate the field into its LS and non-

LS components seems an excellent approach. The wrapping phase cuts of the irrotational
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component are automatically eliminated by the LS unwrapper. Altering the range of the

rotational component is a simple and effective way of varying the placement of the branch

cuts associated with the rotational phase component, and computing the normalized cut

length is an effective way of comparing the effectiveness of branch cut placements. Choosing

the best of four branch cut realizations not only improves average cut placement but, perhaps

more significantly, eliminates the worst cut placements which would significantly degrade AO

system performance. The improved unwrapping eliminates regions of degraded performance

where previous unwrappers yielded poor branch cut placements. The reduced areas of poor

performance not only improves average performance, but may significantly improve systems

such as laser communications where falling below a performance threshold causes signal

fading.
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Figure 78: Comparison of closed-loop AO performance between variable and fixed
φnon−LS range ‘φLS + φnon−LS ’ unwrappers.
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Figure 79: CDF comparisons between variable range φnon−LS and fixed range φnon−LS

unwrappers.
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VI. Results

6.1 Introduction

This chapter combines the results of this research into an basic AO control structure

and tests this structure in simulation. With the exception of log-variance, the base-

line conditions are purposely benign, to allow the parameters to vary one at a time into less

benign regions. The amplitude log-variance is 0.5 in all cases to generate the strong turbu-

lence conditions where branch points will be present in the optical field. The simulation is

tested against varying r0, sample rates, and read noise.

The baseline conditions for the system were DSA/r0 = 0.25, sampling rate 233fG, log-

variance 0.5 and read noise 1000 (this is explained in section 6.5, but is low). The baseline

Kalman gain is 0.4 and is a scalar because there is a single state variable φ. The only

variation of the Kalman gain is to illustrate the effect of altering the Kalman gain under

low-noise, low sample rate conditions.

6.2 Basic AO structure

The basic structure of the AO system under test as developed by this research is shown

in Figure 80. The system has WFS subapertures and DM actuators overlaid in a one-to-one

mapping as shown in Figure 81.

6.3 Varying r0

When considering r0, the relevant values are the ratio of r0 to the subaperture size of

the system. Figure 82 shows a performance curve over 512 frames for the baseline conditions

where DSA/r0 = 0.25. The DSA/r0 ratio was then varied from 0.1 to 1.0 to establish the

DM

SRI

WFS

PI

Controller

Out

Unwrapper

f
Turb

In

f
Corrected

f
DM 

(Wrapped) f
WFSf

DM 
(Unwrapped)

Figure 80: Block diagram of the AO system.
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Figure 81: Depiction of WFS subaperture and DM actuator positions.

impact of DSA/r0 on system performance. The results are shown in Figure 83 where the

performance of a system is the average Strehl ratio of the system. As the graph shows,

as subaperture sizes decrease, performance improves. Larger subapertures are unable to

accurately correct the phase of the wavefront so that as DSA/r0 increases, performance

decreases.

The performance is calculated as the average Strehl ratio of the system for ten different

simulation realizations where a realization is defined as a 512 frame simulation generated

from a particular random seed. The performance of the system for a particular realization

was determined as the average Strehl ratio of the system for frames 101 to 512. Omitting

the first hundred frames was intended to allow the system to be completely locked on the

107



50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

System performance

S
tr

eh
l R

at
io

Frame

Figure 82: System performance (Strehl ratio) for DSA/r0 = 0.25

turbulence before beginning to determine its performance. This method of determining

performance is similarly applied to the other parameter variations in this chapter.

6.4 Varying sample rates

The sample rate of the system, as compared to the Greenwood frequency of the tur-

bulence is an important consideration when designing an AO system. Generally it is best

to sample as fast as possible, but sampling fast has implications to signal quality as well as

computational burden. The quality of the signal is degraded at the faster sampling rates

because the sensor integrates the light over the WFS subapertures for shorter amounts of

time. In addition, the sensor is required to read out the data and function at the higher

speeds. The computation time is important because it is a prime factor in the delay between

a WFS measurement and the application of a modified correction based on that measure-

ment to the DM. The simulation takes the simplistic approach that the computations are
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Figure 83: System performance (Strehl Ratio) vs. DSA/r0

accomplished in one frame which was deemed adequate for this research. The results are

plotted in Figure 84 and show the importance of sampling much faster than fG.

At higher sampling rates, varying the Kalman gain K had little effect on system

performance. This is because the system changed very little between samples and the

signal from the WFS was fairly clean. Performance in this case was most affected by r0

and amplitude log-variance. For the lower sampling rates, however, system performance is

improved by increasing the Kalman gain K. This is because the system is changing more

between samples and the PI controller should take a higher proportion of the WFS input.

It is quite likely that increasing the states of the system to include one or more temporal

differentials of phase would be effective in these lower sampling rate conditions, but that was

not investigated in this research. The effect of varying K at the fixed sampling frequency of

10 times fG is portrayed in Figure 85. While this is admittedly under low-noise conditions,

it highlights the impact of the Kalman gain K at lower sampling rates. Moreover, the
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Figure 84: System performance (Strehl Ratio) vs. normalized sampling rate

fact that the performance is increasing for K ≥ 1 indicates that using additional differential

phase states could further improve performance under low-noise, low sample rate conditions.

This is covered in more detail in Section 7.3 which covers future work.

6.5 Varying read noise

The final variation is that of the noise of the sensor. Sensor noise is considered as

read noise from the sensor and shot noise from the signal. Read noise from the sensor is

modeled as a fixed variance Gaussian. Shot noise is well modeled as a Poisson distribution

of the number of photons received. For simplicity, the signal is considered to be strong

enough (have enough photons) that the Poisson distribution shot noise associated with the

signal can be considered Gaussian with a variance equivalent to the intensity (measured in

photons) encountered by the sensor. The net result is a single Gaussian noise of strength

described by

σ2
Noise = σ2

Read + Imeasurement (64)
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Figure 85: Effect of varying the Kalman gain K for low noise, low sample rate

which is added to the signal.

The field strength of the simulation is such that the read noise is dominant with shot

noise contributing significant portions of the noise at only the highest regions of signal

intensity. This is shown by Figure 86, which portrays an interferogram intensity before

adding noise. The strength of the noise which would be added to the interferogram in

Figure 86 is depicted in Figure 87. The read noise variance is varied from 100 to 150,000

photons. At read noise levels below 100, the system is shot noise dominated while at read

noise levels above 1000, the system is read noise dominated. Middle read noise levels between

100 and 1000 are a mixture, with high intensity subapertures being shot noise dominated

while low intensity subapertures are read noise dominated.
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Figure 86: Interferogram intensity with colorbar scale

The performance of the system when varying read noise is portrayed in Figure 88.

Qualitatively, the SRI is very robust to noise and the performance only degraded at the

highest noise levels. The ‘knee’ in the performance curve depicted in Figure 88 is approxi-

mately 40,000, where the average SNRM defined in Chapter II is less than 2.5.

A significant impact of higher noise levels on the system was in the difficulty in locking

on the signal after closing the loop. This is indicated in Figure 89 which portrays the

performance of a single realization for 100 frames at a read noise of 200,000. The system

does not achieve steady-state until approximately 50 frames have passed, which is much

higher than at lower noise level simulations. However, once the signal is acquired the

system works well even at these much more significant noise levels.
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Figure 87: Interferogram noise variance with colorbar scale

6.6 Chapter conclusions

The purpose of this research is to design an AO system capable of effective operation

in strong turbulence conditions. The system has been shown to operate well under these

strong turbulence conditions for a reasonable range of atmospheric parameters other than

simply having strong turbulence.
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Figure 88: System performance versus measurement noise
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Figure 89: System performance at high noise levels depicting slow lock onto signal
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VII. Conclusions

The development of an AO system effective under strong atmospheric turbulence has

been a difficult problem which some consider the last and greatest challenge of AO.

This research provides insight into the problem of AO control in strong turbulence which

provides the basis for future AO control systems.

7.1 Significant Contributions

The following is a summary of the contributions resulting from this research.

7.1.1 Kalman estimation of anisoplanatic Zernike tilt. Published in the Journal

of Directed Energy, this article utilized a Kalman filter to estimate the anisoplanatic tilt of

a laser communication between a ground station and low-earth orbiting satellite. [43]

7.1.2 An improved temporally phase-shifted design. Presented at the SPIE ‘Optics

and Photonics’ conference, this research developed an improved temporally phase-shifted

SRI design which utilized an EKF to estimate the optical wavefront from individual SRI

interferograms instead of utilizing four temporally-disparate interferograms. [41]

7.1.3 Recognition of the AO controller as an estimator. The recognition of the

fact that a DM combined with a PI controller shares many of the same attributes as a Linear

Kalman Filter justifies designs currently being used and allows targeted improvements to the

system. Moreover, it justifies the common AO design structure used under weak turbulence.

Specifically, a DM followed by a WFS feeding a PI controller provides adequate performance

under both strong and weak atmospheric turbulence conditions. Recognizing this basic

structure as capable, the development emphasis can be placed on dealing with WFSs, which

are more effective under high scintillation, and the problems of unwrapping the phase of the

optical field in the presence of branch points.

7.1.4 Unwrapping last. The difficulty in unwrapping the optical field is the crux

of the problem in transitioning from systems designed to operate under weak turbulence

to system designed to be able to handle strong turbulence. In fact, when considering that

the commonly used AO system operating under weak turbulence utilizes a S-H WFS and
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LS reconstructor which creates an unwrapped phase field, systems operating under weak

turbulence conditions have not required unwrapping.

Under strong turbulence, unwrapping is much more important. When utilizing a non-

gradient WFS such as the SRI, the output of the WFS is wrapped. Unwrapping the SRI

output is insufficient, however, because the resultant phase field after the PI controller may

be wrapped even if the error signal being integrated by the PI controller is unwrapped.

Thus this work concludes that the optical field should be unwrapped after applying the PI

control law instead of unwrapping the WFS output before the PI control law. Moreover,

this research documents the effects of unwrapping at the wrong point in the AO design and

identifies the cause of the performance degradations associated with simply unwrapping the

SRI output.

7.1.5 Improved unwrapping. Unwrapping a wrapped field under weak turbulence

results in a smooth phase field having adjacent phases within π of each other. With the

exception of a constant offset (piston), this result is unique. In strong turbulence, an

unwrapped field will still have discontinuities because of the branch cuts associated with

the branch points of strong turbulence. The unwrapped field is then no longer unique.

Even with a discrete field, the variations in placement of the branch cuts is significant. The

problem becomes one of finding an effective placement of branch cuts which minimizes the

impact of the branch cuts on system performance. This research developed a non-optimal

but effective unwrapping procedure capable of unwrapping an optical field in the presence of

branch points at a reasonable computational burden and is published in Optics Express. [42]

7.2 A single graph

The results of this research in developing a closed-loop AO system utilizing an SRI

WFS can be portrayed in a single graph. The graph in Figure 90 depicts the performance

of an AO system at the baseline parameters for a system using the approach advocated

in this research of ‘control then unwrap’ (with ‘best-of-four’ unwrapping) against a system

using ‘control then unwrap’ without ‘best-of-four’ unwrapping and finally a system utilizing

‘unwrap then control.’ The improvement is clearly seen by the superior Strehl ratio for the

‘Control then unwrap with improved unwrapper’ case.
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Figure 90: Comparison between AO systems

7.3 Future Work

Throughout this research, many areas worthy of further investigation were discovered.

Maintaining a reasonable scope to this research, however, meant that they would have to

be left for future endeavors. These areas are:

1. Expansion of the concepts in this research from simulation the to laboratory. The

ASALT laboratory at SOR is an excellent platform to accomplish this task.

2. Laboratory testing of the improved unwrapper developed during this research.

3. Expansion of the system state-space to include dφ/dt. This would potentially improve

systems operating at lower sample rates.

4. Design of a system which has different Kalman gains for different areas of the aperture.

An approximate SNR for the system could be determined based on signal strength.

Areas with lower noise would have a higher Kalman gain to take advantage of the

improved signal in those areas.
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5. Incorporation of the spatial correlation between adjacent subapertures. This research

concentrated solely on the temporal correlation of phase because that was deemed to

be significantly stronger than spatial correlations under high sample rate conditions.

Spatial correlation is also present and taking both temporal and spatial correlations

into account has potential, particularly at lower sampling rates when temporal corre-

lations weaken.

6. Investigation into designs which does not unwrap every frame. More specifically, de-

signs which unwrap every other frame or every third frame in order to ease the compu-

tational burden associated with unwrapping. This is potentially useful if attempting

to design systems which have a great many WFS subapertures and DM actuators but

still need to operate very fast.

7. Investigation into systems which have WFSs which oversample the wavefront (have

more subapertures than DM actuators). Unwrapping the DM last would still be

the appropriate place to unwrap, but systems could be designed which could handle

turbulence where the phase varied more than π between DM actuators.

8. Design the unwrapper to track the optimum phase range of the non-LS portion of

the phase as a continuous variable instead of a discrete variable. Then, limit the

amount of change that can take place in the range of the non-LS portion of the phase.

Basically instead of choosing between four ranges at π/2 spacing, the optimal phase

range would be tracked and the applied range would slowly vary instead of making

π/2 jumps. This could potentially smooth out the noise of the demonstrated Strehl

ratio performance. [27]
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Appendix A. Appendix

This is where relevant code is. Unless otherwise stated, simulated data was generated

using MATLAB.

A.1 Real and Imaginary contour generator code

%%%%%%%%%%%%%%%%%%

% This program takes a subset of a field and draws the contour slices where

% the real and imaginary parts of the field are zero.

% field2d is expected to already be loaded as a variable. ’start’ and N

% (size of array segment) have to be chosen so that the segment of field2d

% looked at by the program does not exceed field2d

%%%%%%%%%%%%%%%%%%

clc;

% clear;

start_row=200; start_col=200; N=50;

% load ’I:\Classes\Wave Optics II\Project\Final1.mat’ field1d

% [FieldPixSqrd frames] = size(field1d);

% FieldPix = sqrt(FieldPixSqrd);

% field2d=reshape(field1d,[FieldPix,FieldPix,frames]);

field=field2d(start_row:start_row+N-1,start_col:start_col+N-1,1);

% fid = fopen(’L:\eng students\Cain\mantravadi\test fields\scon4r20_r’);

% [field]=getufield(1,513,fid);

% fclose(fid);

% field=field(start_row:start_row+N-1,start_col:start_col+N-1,1);

% Isolate the section of field2d that will be looked at

R=sign(real(field)); I=sign(imag(field));

% Create ’real’ horizontal and vertical lines. Envision horizonal and

119



% vertical lines between the NxN pixels. Thus there will be N-1 rows of

% N horizonal lines. Similarly there will be N rows of N-1 vertical lines.

% Create arrays of the real horizontal and real vertical lines - RH and RV

% respectively. Each point in RH and RV will be either a one or negative

% one. A one in RH indicates that the pixel above and below have the same

% polarity. Negative one indicates that the pixel above and below have

% opposite polarities. The RV matrix is similar except that it deals with

% pixels to the left and right instead of above and below.

RH=R(1:N-1,:).*R(2:N,:); % RH will be N-1 x N

RV=R(:,1:N-1).*R(:,2:N); % RV will be N x N-1

% Do the same thing for the imaginary portion of the field.

IH=I(1:N-1,:).*I(2:N,:); % IH will be N-1 x N

IV=I(:,1:N-1).*I(:,2:N); % IV will be N x N-1

% Draw out the figures. I couldn’t figure out a way to do it except to

% isolate the negative ones in the RH, RV, IH and IV matrices, then

% determine their endpoints and plot them individually. Brute force, but

% adequate.

% figure(2)

% hold on

% RVZ=find(RV==-1);

% for ii=1:length(RVZ)

% x = int16((RVZ(ii)-(N+1)/2)/N);

% y = RVZ(ii)-x*N;

% plot([x+1 x+1],[N+1-y N-y])

% end

% RHZ=find(RH==-1);

% for ii=1:length(RHZ)

% x = int16((RHZ(ii)-N/2)/(N-1));

% y = RHZ(ii)-x*(N-1);
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% plot([x x+1],[N-y N-y])

% end

% title(’Real portion of field contour = 0 slice’);

% legend(’Real portion of field = 0’)

%

% figure(3)

% hold on

% IVZ=find(IV==-1);

% for ii=1:length(IVZ)

% x = int16((IVZ(ii)-(N+1)/2)/N);

% y = IVZ(ii)-x*N;

% plot([x+1 x+1],[N+1-y N-y],’r:’)

% end

% IHZ=find(IH==-1);

% for ii=1:length(IHZ)

% x = int16((IHZ(ii)-N/2)/(N-1));

% y = IHZ(ii)-x*(N-1);

% plot([x x+1],[N-y N-y],’r:’)

% end

% title(’Imaginary portion of field contour = 0 slice’);

% legend(’Imaginary portion of field = 0’)

figure(4) hold on RVZ=find(RV==-1); RHZ=find(RH==-1);

IVZ=find(IV==-1); IHZ=find(IH==-1);

bp=bpfinder(angle(field)); pos_bps=find(bp==1);

neg_bps=find(bp==-1);

% Plot the first real line, imaginary line, positive and negative BPs. This properly sets up

% the legend

if length(RVZ)>0
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x = int32((RVZ(1)-(N+1)/2)/N);

y = RVZ(1)-x*N;

plot([x+1 x+1],[N+1-y N-y])

end if length(IVZ)>0

x = int32((IVZ(1)-(N+1)/2)/N);

y = IVZ(1)-x*N;

plot([x+1 x+1],[N+1-y N-y],’r:’)

end

if length(pos_bps)>0

x = int32((pos_bps(1)-N/2)/(N-1));

y = pos_bps(1)-x*(N-1);

plot(x+1,N-y,’o’);

end

if length(neg_bps)>0

x = int32((neg_bps(1)-N/2)/(N-1));

y = neg_bps(1)-x*(N-1);

plot(x+1,N-y,’x’);

end

for ii=2:length(RVZ)

x = int32((RVZ(ii)-(N+1)/2)/N);

y = RVZ(ii)-x*N;

plot([x+1 x+1],[N+1-y N-y])

end

for ii=1:length(RHZ)

x = int32((RHZ(ii)-N/2)/(N-1));

y = RHZ(ii)-x*(N-1);

plot([x x+1],[N-y N-y])
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end

for ii=2:length(IVZ)

x = int32((IVZ(ii)-(N+1)/2)/N);

y = IVZ(ii)-x*N;

plot([x+1 x+1],[N+1-y N-y],’r:’)

end

for ii=1:length(IHZ)

x = int32((IHZ(ii)-N/2)/(N-1));

y = IHZ(ii)-x*(N-1);

plot([x x+1],[N-y N-y],’r:’)

end

title(’Real and Imaginary portions of field contours = 0 slices

(overlay)’); if length(pos_bps)>0 & length(neg_bps)>0

legend(’Real portion of field = 0’,’Imaginary portion of field = 0’, ’Positive Branch Pt’, ’Negative Branch Pt’)

else

if length(pos_bps)>0

legend(’Real portion of field = 0’,’Imaginary portion of field = 0’, ’Positive Branch Pt’)

else

if length(neg_bps)>0

legend(’Real portion of field = 0’,’Imaginary portion of field = 0’, ’Negative Branch Pt’)

else

legend(’Real portion of field = 0’,’Imaginary portion of field = 0’)

end

end

end

bp=bpfinder(angle(field)); pos_bps=find(bp==1);

neg_bps=find(bp==-1);
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for ii=2:length(pos_bps)

x = int32((pos_bps(ii)-N/2)/(N-1));

y = pos_bps(ii)-x*(N-1);

plot(x+1,N-y,’o’);

end

for ii=2:length(neg_bps)

x = int32((neg_bps(ii)-N/2)/(N-1));

y = neg_bps(ii)-x*(N-1);

plot(x+1,N-y,’x’);

end

axis([0 N 0 N]);

A.2 Branch point finder

% bpfinder find branch points in a phase field

% [bp]=bpfinder(pfield)

% takes a 2 dimensional phase front and returns a 2-dimensional image

% with 1’s and -1’s corresponding to branch points in that phase front

% Originally made by Jai Montravadi, modified by Todd Venema

function [bp]=bpfinder(pfield)

d1=diff(pfield,1,1); d2=diff(pfield,1,2);

d1=(d1<-pi).*2.*pi-(d1>pi).*2.*pi+d1;

d2=(d2<-pi).*2.*pi-(d2>pi).*2.*pi+d2;

bp=[d1(:,2:end)-d2(2:end,:)-d1(:,1:end-1)+d2(1:end-1,:)]; bp =

(bp>0.1)-(bp<-0.1);

return
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A.3 pdf maker

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code generates a pdf of the error from an SRI WFS. It does so my

% generating 1000^2 samples. Each sample has four interferograms and then

% noise is added to each interferogram. The interferograms are then used

% to generated phases via the arctan function. Errors are determined as

% the difference between the estimate and truth. The errors are then put

% into a histogram and the histogram is plotted. This histogram is

% effectively an empirical pdf of the error signal.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

clc;

noise_var=0.3;

samples=1000;

real_phi=pi/4;

photons_per_unit=60;

A=1;

Ar=1;

x=A*cos(real_phi);

y=A*sin(real_phi);

M=(Ar+x).^2+y.^2;

M1=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

SNR1=M/(noise_var+M/photons_per_unit)

M=x.^2+(Ar+y).^2;

M2=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

SNR2=M/(noise_var+M/photons_per_unit)

M=(Ar-x).^2+y.^2;

M3=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);
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SNR3=M/(noise_var+M/photons_per_unit)

M=x.^2+(Ar-y).^2;

M4=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

SNR4=M/(noise_var+M/photons_per_unit)

phi=mod(atan2(M2-M4,M1-M3)-real_phi+pi,2*pi)-pi;

[y x]=hist(phi(:),100);

y=y./sum(y)*99/(x(100)-x(1));

y2=exp(-x.^2./2./std(phi(:)).^2);

y2=y2./sum(y2).*99./(x(100)-x(1));

plot(x,y,x,y2)

axis([-1 1 0 2.5])

legend(’pdf of phi_{SRI}’,’Gaussian pdf w/ same variance’)

xlabel(’\phi_{error}’)

ylabel(’pdf’)

set(gcf,’Position’,[50 400 800 400])

set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH3_Methodology\figures\pdf

A.4 Error variance for different phases

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code generates a plot of error variance as phase changes for an

% SRI WFS. It works by generating 200^2 samples of interferograms for

% 360 different angles for a given signal amplitude. The variance at

% each angle is determined and the different variances are plotted

% against their phases.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

clc;
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noise_var=.3;

samples=300;

photons_per_unit=60;

A=1;

Ar=1;

real_phi=zeros(360,1);

SD=zeros(360,1);

for ii=1:360

ii

real_phi(ii)=(ii-1)*2*pi/360;

x=A*cos(real_phi(ii));

y=A*sin(real_phi(ii));

M=(Ar+x).^2+y.^2;

M1=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

M=x.^2+(Ar+y).^2;

M2=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

M=(Ar-x).^2+y.^2;

M3=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

M=x.^2+(Ar-y).^2;

M4=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

est_phi_error=mod(atan2(M2-M4,M1-M3)-real_phi(ii)+pi,2*pi)-pi;

SD(ii)=std(est_phi_error(:));

end

plot(real_phi,SD)

axis([0 2*pi 0.1 1])

xlabel(’\phi’)

ylabel(’\sigma’)

set(gcf,’Position’,[50 400 800 400])
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set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH3_Methodology\figures\st_dev_vs_phi

A.5 Variance generator

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code generates a surface of noise variance for an SRI WFS. It

% works by generating 200^2 samples of interferograms for a given

% referernce and signal amplitude (Ar and A). The interferograms have

% noise of a given strength added to them and the the estimated phase is

% computed from the standard arctan function. The errors are determined

% difference between the estimate and truth. The errors are put into a

% histogram which is effectively an empirically determined pdf of the

% error. The standard deviation of the pdf then plotted against Ar and A

% is stored to show how they affect the error variance.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

clc;

read_noise=50000;

samples=200;

real_phi=pi/4;

span=40;

actual_SD=zeros(span);

est_SD=zeros(span);

Ar=ones(span,1);

As=ones(span,1);

mx_Ar=1300;

mx_As=260;

for jj=1:span
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As(jj)=jj*mx_As/span;

% jj

for kk=1:span

Ar(kk)=kk*mx_Ar/span;

x=As(jj)*cos(real_phi);

y=As(jj)*sin(real_phi);

M=(Ar(kk)+x).^2+y.^2;

M1=M+sqrt(read_noise.^2+M).*randn(samples);

M=x.^2+(Ar(kk)+y).^2;

M2=M+sqrt(read_noise.^2+M).*randn(samples);

M=(Ar(kk)-x).^2+y.^2;

M3=M+sqrt(read_noise.^2+M).*randn(samples);

M=x.^2+(Ar(kk)-y).^2;

M4=M+sqrt(read_noise.^2+M).*randn(samples);

phi=mod(atan2(M2-M4,M1-M3)-real_phi+pi,2*pi)-pi;

actual_var(jj,kk)=var(phi(:));

est_var(jj,kk)=3.29.*(exp(-As(jj).*Ar(kk)./35000)).^2;

end

end

figure(1)

surf(Ar,As,actual_var)

ylabel(’A_R’)

xlabel(’A_S’)

zlabel(’\sigma^2_\phi’)

title(’\sigma^2_\phi from Monte Carlo analysis’)

camorbit(75,-24)

% set(gcf,’Position’,[50 400 800 400])
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% set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH_AO_as_estimator\figures\Monte_Carlo_variance

figure(2);

surf(Ar,As,est_var);

ylabel(’A_R’)

xlabel(’A_S’)

zlabel(’\sigma^2_\phi’)

title(’estimated \sigma^2_\phi’)

camorbit(75,-24)

% set(gcf,’Position’,[50 400 800 400])

% set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH_AO_as_estimator\figures\estimated_variance

adj=mean(mean(est_var-actual_var))

figure(3)

surf(Ar,As,est_var-actual_var)

sum(sum(abs(actual_var-est_var)))

Qd=0.0583;

As2d=repmat(As,1,span);

Ar2d=repmat(Ar’,span,1);

RoverQd=3.29.*(exp(-As2d.*Ar2d./17500)).^1./Qd;

K=1./(2.*RoverQd).*((1+4.*RoverQd).^0.5-1);

figure(4)

surf(Ar,As,K)

title(’K vs. A_R and A_S’)

ylabel(’A_R’)
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xlabel(’A_S’)

zlabel(’K’)

% set(gcf,’Position’,[50 400 600 400])

% set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH_AO_as_estimator\figures\K_vs_AR_AS
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